The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd


  • J. Barkley RosserJr.
Reference work entry


Econophysics, a term neologized only in 1995, refers to physicists studying economics problems using conceptual approaches from physics. Certain ideas are emphasized, especially the ubiquity of scaling laws in distributions of financial returns, income and wealth, firm sizes, city sizes, and other economic phenomena. However, economists have been using many of these techniques since much earlier, and the influence of ideas from physics on economics dates as far back as 1801 at least. Arguably, if economics successfully absorbs the most useful of this work, ‘econophysics’ may cease to exist.


Bachelier, L. Black–Scholes formula Bounded rationality Brownian motion Canard, N.-F. Econobiology Econochemistry Econophysics Lévy distribution Lognormal distribution Pareto distribution Pareto, V. Random walk Scaling laws Statistical mechanics 

JEL Classifications

C6 D5 
This is a preview of subscription content, log in to check access.


  1. Anderson, P., K. Arrow, and D. Pines, eds. 1988. The economy as an evolving complex system. Redwood City, CA: Addison-Wesley.Google Scholar
  2. Arrow, K. 1974. Essays in the theory of risk bearing. Amsterdam: North-Holland.Google Scholar
  3. Arthur, W., S. Durlauf, and D. Lane, eds. 1997. The economy as an evolving complex system II. Redwood City, CA: Addison-Wesley.Google Scholar
  4. Axtell, R. 2001. Zipf distribution of firm sizes. Science 293: 1818–1820.CrossRefGoogle Scholar
  5. Bachelier, L. 1900. Théorie de la spéculation. Annales Scientifique de lÉcole Normale Supérieure III-17, 21–86. (English translation). In The random character of stock market prices, ed. P. Cootner, 1964. Cambridge, MA: MIT Press.Google Scholar
  6. Bak, Per. 1996. How nature eorks: The science of self-organized criticality. New York: Copernicus Press for Springer-Verlag.CrossRefGoogle Scholar
  7. Bak, P., K. Chen, J. Scheinkman, and M. Woodford. 1993. Aggregate fluctuations from independent sectoral shocks: self-organized criticality in a model of production and inventory dynamics. Ricerche Economiche 47: 3–30.CrossRefGoogle Scholar
  8. Black, F., and M. Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–654.CrossRefGoogle Scholar
  9. Blume, L. 1993. The statistical mechanics of strategic interaction. Games and Economic Behavior 5: 387–424.CrossRefGoogle Scholar
  10. Botazzi, G., and A. Secchi. 2003. A stochastic model of firm growth. Physica A 324: 213–219.CrossRefGoogle Scholar
  11. Bouchaud, J.-P., and R. Cont. 1998. A Langevin approach to stock market fluctuations and crashes. European Physical Journal B 6: 543–550.CrossRefGoogle Scholar
  12. Bouchaud, J.-P., and M. Mézard. 2000. Wealth condensation in a simple model of economy. Physica A 282: 536–545.CrossRefGoogle Scholar
  13. Brock, W. 1993. Pathways to randomness in the economy: emergent nonlinearity and chaos in economics and finance. Estudios Económicos 8: 3–55.Google Scholar
  14. Brock, W., and S. Durlauf. 2001. Discrete choice with social interactions. Review of Economic Studies 68: 235–260.CrossRefGoogle Scholar
  15. Canard, N.-F. 1801. Principes d’Économie Politique, 1969. Rome: Edizioni Bizzarri.Google Scholar
  16. Canning, D., L. Amaral, Y. Lee, M. Meyer, and H. Stanley. 1998. A power law for scaling the volatility of GDP growth rates with country size. Economics Letters 60: 335–341.CrossRefGoogle Scholar
  17. Chakrabarti, B. 2005. Econphys-Kolkata: a short story. In Econophysics of wealth distributions, ed. A. Chatterjee, S. Yarlagadda, and B. Charkrabarti. Milan: Springer.Google Scholar
  18. Chatterjee, A., S. Yarlagadda, and B. Charkrabarti, eds. 2005. Econophysics of wealth distributions. Milan: Springer.Google Scholar
  19. Clementi, F., and M. Gallegati. 2005. Power law tails in the Italian personal income distribution. Physica A 350: 427–438.CrossRefGoogle Scholar
  20. Drăgulescu, A., and V. Yakovenko. 2001. Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Physica A 299: 213–221.CrossRefGoogle Scholar
  21. Durlauf, S. 1993. Nonergodic economic growth. Review of Economic Studies 60: 349–366.CrossRefGoogle Scholar
  22. Durlauf, S. 1997. Statistical mechanics approaches to socioeconomic behavior. In The Economy as a complex evolving system II, ed. W. Arthur, S. Durlauf, and D. Lane. Redwood City, CA: Addison-Wesley.Google Scholar
  23. Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von der ruhenden Flüssigkeiten suspendierten Teichen. Annalen der Physik 17: 549–560.CrossRefGoogle Scholar
  24. Farmer, J., and S. Joshi. 2002. The price dynamics of common trading strategies. Journal of Economic Behavior and Organization 49: 149–171.CrossRefGoogle Scholar
  25. Fisher, I. 1926. Mathematical investigations into the theory of value and prices. New Haven: Yale University Press.Google Scholar
  26. Foley, D. 1994. A statistical equilibrium theory of markets. Journal of Economic Theory 62: 321–345.CrossRefGoogle Scholar
  27. Föllmer, H. 1974. Random economies with many interacting agents. Journal of Mathematical Economics 1: 51–62.CrossRefGoogle Scholar
  28. Gabaix, X. 1999. Zipf’s law for cities: an explanation. Quarterly Journal of Economics 114: 739–767.CrossRefGoogle Scholar
  29. Gibbs, J. 1902. Elementary principles in statistical mechanics. New Haven: Yale University Press.Google Scholar
  30. Gibrat, R. 1931. Les Inégalités Économiques. Paris: Sirey.Google Scholar
  31. Gopakrishnan, P., V. Plerou, L. Amaral, M. Meyer, and H. Stanley. 1999. Scaling of the distributions of fluctuations of financial market indices. Physical Review E 60: 5305–5316.CrossRefGoogle Scholar
  32. Hartmann, G., and O. Rössler. 1998. Coupled flare attractors – a discrete prototype for economic modelling. Discrete Dynamics in Nature and Society 2: 153–159.CrossRefGoogle Scholar
  33. Hens, T. 2002. Evolutionary portfolio theory. Asset allocation almanac: special report #4. Merrill Lynch. Online. Available at Accessed 22 May 2006.
  34. Hodgson, G. 1993. Economics and evolution: bringing life back into economics. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar
  35. Ijiri, Y., and H. Simon. 1977. Skew distributions and the sizes of business firms. Amsterdam: North-Holland.Google Scholar
  36. Levy, M., and S. Solomon. 1997. New evidence for the power-law distribution of wealth. Physica A 242: 90–94.CrossRefGoogle Scholar
  37. Lévy, P. 1925. Calcul des Probabilités. Paris: Gauthier-Villars.Google Scholar
  38. Li, H., and J. Rosser Jr. 2004. Market dynamics and stock price volatility. European Physical Journal B 39: 409–413.CrossRefGoogle Scholar
  39. Lotka, A. 1926. The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences 12: 317–323.Google Scholar
  40. Lux, T., and M. Marchesi. 1999. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397: 498–500.CrossRefGoogle Scholar
  41. Majorana, E. 1942. Il valore delle leggi statistiche nelle fisica e nelle scienze sociali. Scientia 36: 58–66.Google Scholar
  42. Mandelbrot, B. 1963. The variation of certain speculative prices. Journal of Business 36: 394–419.CrossRefGoogle Scholar
  43. Mandelbrot, B. 1983. The fractal geometry of nature. San Francisco: W.H. Freeman.Google Scholar
  44. Mandelbrot, B. 1997. Fractals and scaling in finance. New York: Springer-Verlag.CrossRefGoogle Scholar
  45. Mantegna, R. 1991. Lévy walks and enhanced diffusion in Milan stock exchange. Physica A 179: 232–242.CrossRefGoogle Scholar
  46. Mantegna, R., and H. Stanley. 2000. An introduction to econophysics: correlations and complexity in finance. Cambridge: Cambridge University Press.Google Scholar
  47. Marshall, A. 1920. Principles of economics. 8 ed. London: Macmillan.Google Scholar
  48. McCauley, J. 2004. Dynamics of markets: econophysics and finance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Mirowski, P. 1989. More heat than light: economics as social physics, physics as nature’s economics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  50. Osborne, M. 1959. Brownian motion in stock markets. Operations Research 7: 145–173.CrossRefGoogle Scholar
  51. Padgett, J., D. Lee, and N. Collier. 2003. Economic production as chemistry. Industrial and Corporate Change 12: 843–877.CrossRefGoogle Scholar
  52. Pareto, V. 1897. Cours dÉconomie Politique. Paris and Lausanne. Trans. In Manual of Political Economy, ed. A. Schwier, 1971. New York: Kelly.Google Scholar
  53. Plerou, V., L. Amaral, P. Gopakrishnan, M. Meyer, and H. Stanley. 1999. Similarities between the growth dynamics of university research and competitive economic activities. Nature 400: 433–437.CrossRefGoogle Scholar
  54. Rosser, J. Jr. 1994. Dynamics of emergent urban hierarchy. Chaos, Solitons & Fractals 4: 553–562.CrossRefGoogle Scholar
  55. Samuelson, P. 1947. Foundations of economic analysis. Cambridge, MA: Harvard University Press.Google Scholar
  56. Sornette, D. 2003. Why stock markets crash: critical events in complex financial systems. Princeton: Princeton University Press.Google Scholar
  57. Sornette, D., and A. Johansen. 2001. Significance of log-periodic precursors to financial crashes. Quantitative Finance 1: 452–471.CrossRefGoogle Scholar
  58. Sornette, D., and D. Zajdenweber. 1999. Economic returns of research: The Pareto law and its implications. European Physical Journal B 8: 653–664.CrossRefGoogle Scholar
  59. Spitzer, F. 1971. Random fields and interacting particle systems. Providence: American Mathematical Society.Google Scholar
  60. Stanley, H., V. Afanasyev, L. Aamaral, S. Buldyrev, A. Goldberger, S. Havlin, H. Leschhorn, P. Maass, R. Mantegna, C.-K. Peng, P. Prince, M. Salinger, M. Stanley, and G. Viswanathan. 1996a. Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A 224: 302–321.CrossRefGoogle Scholar
  61. Stanley, M., L. Amaral, S. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. Salinger, and H. Stanley. 1996b. Scaling behavior in the growth of companies. Nature 379: 804–806.CrossRefGoogle Scholar
  62. Stutzer, M. 1994. The statistical mechanics of asset prices. In Differential equations, dynamical systems, and control science: A festschrift in honor of lawrence markus, ed. K. Elworthy, W. Everitt, and E. Lee, vol. 152. New York: Marcel Dekker.Google Scholar
  63. Takayasu, H., and K. Okuyama. 1998. Country dependence on company size distributions and a numerical model based on competition and cooperation. Fractals 6: 67–79.CrossRefGoogle Scholar
  64. Zipf, G. 1941. National unity and disunity. Bloomington, IN: Principia Press.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • J. Barkley RosserJr.
    • 1
  1. 1.