The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Deterministic Evolutionary Dynamics

  • William H. Sandholm
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2667

Abstract

We review the literature on deterministic evolutionary dynamics in game theory. We describe the micro-foundations of dynamic evolutionary models and offer some basic examples. We report on stability theory for evolutionary dynamics, and we discuss the senses in which evolutionary dynamics support and fail to support traditional game-theoretic solution concepts.

Keywords

Asymptotic stability Convergence Deterministic evolutionary dynamics Evolutionarily stable strategies Evolutionary dynamics Extensive form games Game theory Imitative dynamics Index theory Lyapunov functions Markov processes Mean dynamic Poincaré–Hopf theorem Population games Predictions Refinements of Nash equilibrium Replicator dynamic Revision protocols 

JEL Classifications

C7 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Akin, E. 1980. Domination or equilibrium. Mathematical Biosciences 50: 239–250.CrossRefGoogle Scholar
  2. Beckmann, M., C. McGuire, and C. Winsten. 1956. Studies in the economics of transportation. New Haven: Yale University Press.Google Scholar
  3. Benaïm, M., and J. Weibull. 2003. Deterministic approximation of stochastic evolution in games. Econometrica 71: 873–903.CrossRefGoogle Scholar
  4. Berger, U., and J. Hofbauer. 2006. Irrational behavior in the Brown–von Neumann–Nash dynamics. Games and Economic Behavior 56: 1–6.CrossRefGoogle Scholar
  5. Björnerstedt, J., and J. Weibull. 1996. Nash equilibrium and evolution by imitation. In The rational foundations of economic behavior, ed. K. Arrow et al. New York: St Martin’s Press.Google Scholar
  6. Bomze, I. 1986. Non-cooperative two-person games in biology: A classification. International Journal of Games Theory 15: 31–57.CrossRefGoogle Scholar
  7. Brown, G., and J. von Neumann. 1950. Solutions of games by differential equations. In Contributions to the theory of games I, ed. H. Kuhn and A. Tucker. Annals of Mathematics Studies 24. Princeton: Princeton University Press.Google Scholar
  8. Cressman, R. 2003. Evolutionary dynamics and extensive form games. Cambridge, MA: MIT Press.Google Scholar
  9. Cressman, R., and K. Schlag. 1998. The dynamic (in)stability of backwards induction. Journal of Economic Theory 83: 260–285.CrossRefGoogle Scholar
  10. Dawkins, R. 1982. The extended phenotype. San Francisco: Freeman.Google Scholar
  11. Demichelis, S., and K. Ritzberger. 2003. From evolutionary to strategic stability. Journal of Economic Theory 113: 51–75.CrossRefGoogle Scholar
  12. Friedman, D. 1991. Evolutionary games in economics. Econometrica 59: 637–666.CrossRefGoogle Scholar
  13. Fudenberg, D., and D. Levine. 1998. Theory of learning in games. Cambridge, MA: MIT Press.Google Scholar
  14. Gilboa, I., and A. Matsui. 1991. Social stability and equilibrium. Econometrica 59: 859–867.CrossRefGoogle Scholar
  15. Hart, S., and A. Mas-Colell. 2003. Uncoupled dynamics do not lead to Nash equilibrium. American Economic Review 93: 1830–1836.CrossRefGoogle Scholar
  16. Hofbauer, J. 2000. From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS. Selection 1: 81–88.CrossRefGoogle Scholar
  17. Hofbauer, J., and W. Sandholm. 2006. Survival of dominated strategies under evolutionary dynamics. Mimeo: University College London and University of Wisconsin.Google Scholar
  18. Hofbauer, J., P. Schuster, and K. Sigmund. 1979. A note on evolutionarily stable strategies and game dynamics. Journal of Theoretical Biology 27: 537–548.Google Scholar
  19. Hofbauer, J., and K. Sigmund. 1988. Theory of evolution and dynamical systems. Cambridge: Cambridge University Press.Google Scholar
  20. Hofbauer, J., and K. Sigmund. 1998. Evolutionary games and population dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Hofbauer, J., and K. Sigmund. 2003. Evolutionary game dynamics. Bulletin of the American Mathematical Society N.S. 40: 479–519.CrossRefGoogle Scholar
  22. Hofbauer, J., and J. Swinkels. 1996. A universal Shapley example. Mimeo: University of Vienna and Northwestern University.Google Scholar
  23. Hofbauer, J., and J. Weibull. 1996. Evolutionary selection against dominated strategies. Journal of Economic Theory 71: 558–573.CrossRefGoogle Scholar
  24. Kohlberg, E., and J.-F. Mertens. 1986. On the strategic stability of equilibria. Econometrica 54: 1003–1038.CrossRefGoogle Scholar
  25. Maynard Smith, J. 1982. Evolution and the theory of games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Maynard Smith, J., and G. Price. 1973. The logic of animal conflict. Nature 246: 15–18.CrossRefGoogle Scholar
  27. Nachbar, J. 1990. ‘Evolutionary’ selection dynamics in games: Convergence and limit properties. International Journal of Games Theory 19: 59–89.CrossRefGoogle Scholar
  28. Samuelson, L. 1997. Evolutionary games and equilibrium selection. Cambridge, MA: MIT Press.Google Scholar
  29. Samuelson, L., and J. Zhang. 1992. Evolutionary stability in asymmetric games. Journal of Economic Theory 57: 363–391.CrossRefGoogle Scholar
  30. Sandholm, W. 2001. Potential games with continuous player sets. Journal of Economic Theory 97: 81–108.CrossRefGoogle Scholar
  31. Sandholm, W. 2007. Population games and evolutionary dynamics. Cambridge, MA: MIT Press.Google Scholar
  32. Schuster, P., and K. Sigmund. 1983. Replicator dynamics. Journal of Theoretical Biology 100: 533–538.CrossRefGoogle Scholar
  33. Smith, M. 1984. The stability of a dynamic model of traffic assignment – An application of a method of Lyapunov. Transportation Science 18: 245–252.CrossRefGoogle Scholar
  34. Swinkels, J. 1993. Adjustment dynamics and rational play in games. Games and Economic Behavior 5: 455–484.CrossRefGoogle Scholar
  35. Taylor, P., and L. Jonker. 1978. Evolutionarily stable strategies and game dynamics. Mathematical Biosciences 40: 145–156.CrossRefGoogle Scholar
  36. Vega-Redondo, F. 1996. Evolution, games, and economic behavior. Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Weibull, J. 1995. Evolutionary game theory. Cambridge, MA: MIT Press.Google Scholar
  38. Zeeman, E. 1980. Population dynamics from game theory. In Global theory of dynamical systems, ed. Z. Nitecki and C. Robinson. Berlin: Springer.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • William H. Sandholm
    • 1
  1. 1.