The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Learning and Evolution in Games: ESS

  • Ross Cressman
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2655

Abstract

The ESS concept, developed in the 1970s to predict through static fitness comparisons the evolutionary outcome of individual behaviours in a biological species, emerged as the cornerstone of evolutionary game theory. This theory is now as central to the analysis of strategic interactions in the social and management sciences as in the life sciences. The ESS also addresses stability questions for dynamics describing how individual behaviours evolve over time. Here, we summarize ESS theory as originally developed for symmetric two-player games and then discuss generalizations to population games, extensive form games, games with continuous strategy spaces, asymmetric and bimatrix games.

Keywords

Asymmetric games Asymptotic stability Backward induction Best response dynamics Bimatrix games Buyer–seller game Common interest games Continuously stable strategy Direct ESS ESS (evolutionarily stable strategy) ESSet Evolutionary dynamics Evolutionary game theory Extensive form games Invasion barrier Local superiority Nash demand game Nash equilibrium (NE) NE component Neighbourhood invader strategy Neighbourhood superiority Neutrally stable strategies Normal form games Owner–intruder game Partnership games Pervasive strategy Playing-the-field models Population games Prisoner’s dilemma game Replicator equation Rock–scissors–paper game Selten, R. Strictly stable game Symmetrical games Two-species ESS War of attrition game 

JEL Classifications

C7 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Apaloo, J. 1997. Revisiting strategic models of evolution: The concept of neighborhood invader strategies. Theoretical Population Biology 52: 71–77.CrossRefGoogle Scholar
  2. Binmore, K., L. Samuelson, and P. Young. 2003. Equilibrium selection in bargaining models. Games and Economic Behavior 45: 296–328.CrossRefGoogle Scholar
  3. Bomze, I. 1995. Lotka–Volterra equation and replicator dynamics: New issues in classification. Biological Cybernetics 72: 447–453.CrossRefGoogle Scholar
  4. Bomze, I., and B. Pötscher. 1989. Game theoretical foundations of evolutionary stability. Lecture notes in economics and mathematical systems 324. Berlin: Springer-Verlag.Google Scholar
  5. Cressman, R. 1992. The stability concept of evolutionary games (A dynamic approach). Lecture notes in biomathematics 94. Berlin: Springer-Verlag.Google Scholar
  6. Cressman, R. 2003. Evolutionary dynamics and extensive form games. Cambridge, MA: MIT Press.Google Scholar
  7. Cressman, R. 2005. Continuously stable strategies, neighborhood superiority and two-player games with continuous strategy space. Mimeo.Google Scholar
  8. Cressman, R., and J. Hofbauer. 2005. Measure dynamics on a one-dimensional continuous trait space: Theoretical foundations for adaptive dynamics. Theoretical Population Biology 67: 47–59.CrossRefGoogle Scholar
  9. Dieckmann, U., and R. Law. 1996. The dynamical theory of coevolution: A derivation from stochastic ecological processes. Journal of Mathematical Biology 34: 579–612.CrossRefGoogle Scholar
  10. Eshel, I. 1983. Evolutionary and continuous stability. Journal of Theoretical Biology 103: 99–111.CrossRefGoogle Scholar
  11. Hofbauer, J., P. Schuster, and K. Sigmund. 1979. A note on evolutionarily stable strategies and game dynamics. Journal of Theoretical Biology 81: 609–612.CrossRefGoogle Scholar
  12. Hofbauer, J., and K. Sigmund. 1998. Evolutionary games and population dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Hofbauer, J., and K. Sigmund. 2003. Evolutionary game dynamics. Bulletin of the American Mathematical Society 40: 479–519.CrossRefGoogle Scholar
  14. Leimar, O. 2006. Multidimensional convergence stability and the canonical adaptive dynamics. In Elements of adaptive dynamics, ed. U. Dieckmann and J. Metz. Cambridge: University Press.Google Scholar
  15. Maynard Smith, J. 1982. Evolution and the theory of games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Maynard Smith, J., and G. Price. 1973. The logic of animal conflicts. Nature 246: 15–18.CrossRefGoogle Scholar
  17. Morris, S., R. Rob, and H. Shin. 1995. Dominance and belief potential. Econometrica 63: 145–157.CrossRefGoogle Scholar
  18. Nachbar, J. 1992. Evolution in the finitely repeated Prisoner’s Dilemma. Journal of Economic Behavior and Organization 19: 307–326.CrossRefGoogle Scholar
  19. Nash, J. 1951. Non-cooperative games. Annals of Mathematics 54: 286–295.CrossRefGoogle Scholar
  20. Oechssler, J., and F. Riedel. 2002. On the dynamic foundation of evolutionary stability in continuous models. Journal of Economic Theory 107: 223–252.CrossRefGoogle Scholar
  21. Sandholm, W. 2006. Population games and evolutionary dynamics. Cambridge, MA: MIT Press.Google Scholar
  22. Selten, R. 1980. A note on evolutionarily stable strategies in asymmetrical animal contests. Journal of Theoretical Biology 84: 93–101.CrossRefGoogle Scholar
  23. Selten, R. 1983. Evolutionary stability in extensive two-person games. Mathematical Social Sciences 5: 269–363.CrossRefGoogle Scholar
  24. Taylor, P., and L. Jonker. 1978. Evolutionarily stable strategies and game dynamics. Mathematical Biosciences 40: 145–156.CrossRefGoogle Scholar
  25. Thomas, B. 1985. On evolutionarily stable sets. Journal of Mathematical Biology 22: 105–115.CrossRefGoogle Scholar
  26. van Damme, E. 1991. Stability and perfection of nash equilibria. 2nd ed. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  27. Weibull, J. 1995. Evolutionary game theory. Cambridge, MA: MIT Press.Google Scholar
  28. Zeeman, E. 1980. Population dynamics from game theory. In Global theory of dynamical systems, ed. Z. Nitecki and C. Robinson. Lecture notes in mathematics 819. Berlin: Springer.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Ross Cressman
    • 1
  1. 1.