The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Statistical Mechanics

  • Steven N. Durlauf
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2640

Abstract

Statistical mechanics models constitute a mathematical framework that is useful in describing the aggregate behaviour of interacting populations. While the methods originate in physics, they have proven useful in modelling socio-economic phenomena. This article describes the basic properties of statistical mechanics models and discusses their use in theoretical and empirical economics.

Keywords

Arrow–Debreu model of general equilibrium Conditional probability Continuous choice spaces Coordination games Diffusion of technology Discrete time models Emergence Evolutionary game theory Financial market fluctuations Game theory Information transmission Kolmogorov extension theorem Law of large numbers Markov processes Mathematics and economics Microfoundations Multinomial choice models Multiple equilibria Multiple steady states Nonergodicity Physics and economics Reflection problem Statistical mechanics Technical change Trade networks Unemployment Universality 
This is a preview of subscription content, log in to check access

Bibliography

  1. Allen, B. 1982. Some stochastic processes of interdependent demand and technological diffusion exhibiting externalities among adopters. International Economic Review 23: 595–608.CrossRefGoogle Scholar
  2. Auerswald, P., S. Kauffman, J. Lobo, and K. Shell. 2000. The production recipes approach to technological innovation: An application to learning by doing. Journal of Economic Dynamics and Control 24: 389–450.CrossRefGoogle Scholar
  3. Badii, R., and A. Politi. 1997. Complexity: Hierarchical structures and scaling in physics. New York: Cambridge University Press.CrossRefGoogle Scholar
  4. Bak, P., K. Chen, J. Scheinkman, and M. Woodford. 1993. Aggregate fluctuations from independent sectoral shocks: Self-organized criticality in a model of production and inventory dynamics. Ricerche Economiche 47: 3–30.CrossRefGoogle Scholar
  5. Bisin, A., U. Horst, and O. Özgür. 2006. Rational expectations equilibria of economies with social interactions. Journal of Economic Theory 127: 74–116.CrossRefGoogle Scholar
  6. Blume, L. 1993. The statistical mechanics of strategic interaction. Games and Economic Behavior 5: 387–424.CrossRefGoogle Scholar
  7. Blume, L. 1995. The statistical mechanics of best-response strategy revision. Games and Economic Behavior 11: 111–145.CrossRefGoogle Scholar
  8. Brock, W. 1993. Pathways to randomness in the economy: Emergent nonlinearity and chaos in economics and finance. Estudios Economicos 8: 3–55.Google Scholar
  9. Brock, W., and S. Durlauf. 2001a. Discrete choice with social interactions. Review of Economic Studies 68: 235–260.CrossRefGoogle Scholar
  10. Brock, W., and S. Durlauf. 2001b. Interactions-based models. In Handbook of Econometrics, ed. J. Heckman and E. Leamer, Vol. 5. Amsterdam: North-Holland.Google Scholar
  11. Brock, W., and S. Durlauf. 2006. A multinomial choice model with social interactions. In The economy as an evolving complex system III, ed. L. Blume and S. Durlauf. New York: Oxford University Press.Google Scholar
  12. Brock, W., and S. Durlauf. 2007. Identification of binary choice models with social interactions. Journal of Econometrics 140: 52–75.CrossRefGoogle Scholar
  13. Conley, T., and G. Topa. 2003. Identification of local-interactions models with imperfect location data. Journal of Applied Econometrics 18: 605–618.CrossRefGoogle Scholar
  14. Durlauf, S. 1993. Nonergodic economic growth. Review of Economic Studies 60: 349–366.CrossRefGoogle Scholar
  15. Durlauf, S. 1997. Statistical mechanics approaches to socioeconomic behavior. In The economy as an evolving complex system II, ed. W. Arthur, S. Durlauf, and D. Lane. Reading, MA: Addison-Wesley.Google Scholar
  16. Ellis, R. 1985. Entropy, large deviations, and statistical mechanics. New York: Springer-Verlag.CrossRefGoogle Scholar
  17. Fischer, K., and J. Hertz. 1991. Spin glasses. New York: Cambridge University Press.CrossRefGoogle Scholar
  18. Follmer, H. 1974. Random economies with many interacting agents. Journal of Mathematical Economics 1: 51–62.CrossRefGoogle Scholar
  19. Glaeser, E., B. Sacerdote, and J. Scheinkman. 1996. Crime and social interactions. Quarterly Journal of Economics 111: 507–548.CrossRefGoogle Scholar
  20. Horst, U. 2005. Financial price fluctuations in a stock market model with many interacting agents. Economic Theory 25: 917–832.CrossRefGoogle Scholar
  21. Horst, U., and J. Scheinkman. 2006. Equilibria in systems of social interactions. Journal of Economic Theory 130: 44–77.CrossRefGoogle Scholar
  22. Ioannides, Y. 1997. The evolution of trading structures. In The economy as an evolving complex system II, ed. W. Arthur, S. Durlauf, and D. Lane. Reading, MA: Addison-Wesley.Google Scholar
  23. Ioannides, Y. 2006. Topologies of social interactions. Economic Theory 28: 559–584.CrossRefGoogle Scholar
  24. Kelly, M. 1994. Big shocks versus small shocks in a dynamic stochastic economy with many interacting agents. Journal of Economic Dynamics and Control 18: 397–410.CrossRefGoogle Scholar
  25. Kindermann, R., and J. Snell. 1980. Markov random fields and their applications. Providence, RI: American Mathematical Society Online. Available at http://www.ams.org/online_bks/conm1/conm1-whole.pdf. Accessed September 13, 2006.CrossRefGoogle Scholar
  26. Kosfeld, M. 2005. Rumours and markets. Journal of Mathematical Economics 41: 646–664.CrossRefGoogle Scholar
  27. Liggett, T. 1985. Interacting particle systems. New York: Springer-Verlag.CrossRefGoogle Scholar
  28. Liggett, R. 1991. Stochastic interacting systems: Contact, voter, and exclusion models. New York: Springer-Verlag.Google Scholar
  29. Manski, C. 1993. Identification of endogenous social effects: The reflection problem. Review of Economic Studies 60: 531–542.CrossRefGoogle Scholar
  30. Oomes, N. 2003. Local trade networks and spatially persistent unemployment. Journal of Economic Dynamics and Control 27: 2115–2149.CrossRefGoogle Scholar
  31. Thompson, C. 1988. Classical equilibrium statistical mechanics. New York: Oxford University Press.Google Scholar
  32. Topa, G. 2001. Social interactions, local spillovers, and unemployment. Review of Economic Studies 68: 261–295.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Steven N. Durlauf
    • 1
  1. 1.