The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Computation of General Equilibria (New Developments)

  • Felix Kubler
Reference work entry


In this article, I review two recent developments in the theory of computation of general equilibria. First, following Brown et al. (1996) several papers have developed globally convergent algorithms for the computation of general equilibria in models with incomplete asset markets. I review some of the developments in that area. Second, new developments in computational algebraic geometry lead to algorithms to compute effectively all equilibria of systems of polynomial equations. I point out some applications of these algorithms to general equilibrium theory.


Computation of general equilibria Gröbner bases Homotopy algorithms Incomplete asset markets Kuhn–Tucker conditions Multiple equilibria Newton–Kantarovich conditions Real business cycles Semi-algebraic economies Smale’s alpha method Tarski–Seidenberg th Uncertainty 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Basu, S., R. Pollack, and M.-F. Roy. 2003. Algorithms in real algebraic geometry. New York: Springer.Google Scholar
  2. Blum, L., F. Cucker, M. Shub, and S. Smale. 1998. Complexity and real computation. New York: Springer.CrossRefGoogle Scholar
  3. Brown, D.J., P.M. DeMarzo, and B.C. Eaves. 1996. Computing equilibria when asset markets are incomplete. Econometrica 64: 1–27.CrossRefGoogle Scholar
  4. Codenotti, B., S. Pemmaraju, and K. Varadarajan. 2004. Algorithms column: The computation of market equilibria. ACM SIGACT News 35(4): 23–37.CrossRefGoogle Scholar
  5. Debreu, G. 1972. Smooth preferences. Econometrica 40: 603–615.CrossRefGoogle Scholar
  6. Eaves, B.C. 1972. Homotopies for the computation of fixed points. Mathematical Programming 3: 1–22.CrossRefGoogle Scholar
  7. Faugère, J.C. 1999. A new efficient algorithm for computing Gröbner bases (f4). Journal of Pure and Applied Algebra 139: 61–88.CrossRefGoogle Scholar
  8. Ferris, M.C., and J.S. Pang. 1997. Engineering and economic applications of complementarity problems. SIAM Review 39: 669–713.CrossRefGoogle Scholar
  9. Garcia, C., and W. Zangwill. 1981. Pathways to solutions, fixed points, and equilibria. Englewood Cliffs: Prentice Hall.Google Scholar
  10. Herings, P.J.J., and K. Schmedders. 2006. Computing equilibria in finance economies with incomplete markets and transaction costs. Economic Theory 27: 493–512.CrossRefGoogle Scholar
  11. Judd, K. 1998. Numerical methods in economics. Cambridge: MIT Press.Google Scholar
  12. Kehoe, T.J., and E.C. Prescott. 1995. Introduction to the symposium, the discipline of applied general equilibrium. Economic Theory 6: 1–11.CrossRefGoogle Scholar
  13. Kubler, F. 2001. Computable general equilibrium with financial markets. Economic Theory 18: 73–96.CrossRefGoogle Scholar
  14. Kubler, F., and K. Schmedders. 2000. Computing equilibria in stochastic finance economies. Computational Economics 15: 145–172.CrossRefGoogle Scholar
  15. Kubler, F., and Schmedders, K. 2006. Uniqueness of equilibria in semi-algebraic economies. Discussion paper, Northwestern University.Google Scholar
  16. Magill, M.J.P., and M. Qunizii. 1996. Theory of incomplete markets. Cambridge: MIT Press.Google Scholar
  17. Richter, M.K., and K.-C. Wong. 1999. Non-computability of competitive equilibrium. Economic Theory 14: 1–27.CrossRefGoogle Scholar
  18. Scarf, H. 1967. On the computation of equilibrium prices. In Ten economic studies in the tradition of irving fisher, ed. W.J. Fellner. New York: Wiley.Google Scholar
  19. Schmedders, K. 1998. Computing equilibria in the general equilibrium model with incomplete asset markets. Journal of Economic Dynamics and Control 22: 1375–1403.CrossRefGoogle Scholar
  20. Schmedders, K. 2004. Homotopy path-following with easyhomotopy: Solving nonlinear equations for economic models. Working paper, Northwestern University.Google Scholar
  21. Shoven, J.B., and J. Whalley. 1992. Applying general equilibrium. Cambridge: Cambridge University Press.Google Scholar
  22. Sommese, A.J., and C.W. Wampler. 2005. The numerical solution of systems of polynomials arising in engineering and science. Singapore: World Scientific Press.CrossRefGoogle Scholar
  23. Sturmfels, B. 2002. Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics No. 97. Providence: American Mathematical Society.CrossRefGoogle Scholar
  24. Watson, L.T. 1979. A globally convergent algorithm for computing fixed points of C2 maps. Applied Mathematics and Computation 5: 297–311.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Felix Kubler
    • 1
  1. 1.