Skip to main content

Generalized Method of Moments Estimation

  • Reference work entry
  • First Online:
The New Palgrave Dictionary of Economics

Abstract

Generalized method of moments estimates econometric models without requiring a full statistical specification. One starts with a set of moment restrictions that depend on data and an unknown parameter vector to be estimated. When there are more moment restrictions than underlying parameters, there is family of such estimators. The tractable form of the large sample properties of this family facilitates efficient estimation and statistical testing. This article motivates the method, presents some of the underlying statistical properties, and discusses implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 8,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Amemiya, T. 1974. The nonlinear two-stage least-squares estimator. Journal of Econometrics 2: 105–110.

    Article  Google Scholar 

  • Arellano, M. 2003. Panel data econometrics. New York: Oxford University Press.

    Book  Google Scholar 

  • Bontemps, C., and N. Meddahi. 2005. Testing normality: A GMM approach. Journal of Econometrics 124: 149–186.

    Article  Google Scholar 

  • Carrasco, M., and J.P. Florens. 2000. Generalization of GMM to a continuum of moment conditions. Econometric Theory 20: 797–834.

    Article  Google Scholar 

  • Chamberlain, G. 1986. Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics 34: 305–334.

    Article  Google Scholar 

  • Chernozhukov, V., and H. Hong. 2003. An MCMC approach to classical estimation. Journal of Econometrics 115: 293–346.

    Article  Google Scholar 

  • Christiano, L.J., and M. Eichenbaum. 1992. Current real business cycle theories and aggregate labor market fluctuations. American Economic Review 82: 430–450.

    Google Scholar 

  • Cochrane, J. 2001. Asset pricing. Princeton: Princeton University Press.

    Google Scholar 

  • Cumby, R.E., J. Huizinga, and M. Obstfeld. 1983. Two-step two-stage least squares estimation in models with rational expectations. Journal of Econometrics 21: 333–335.

    Article  Google Scholar 

  • Eichenbaum, M.S., L.P. Hansen, and K.J. Singleton. 1988. A time series analysis of representation agent models of consumption and leisure choice under uncertainty. Quarterly Journal of Economics 103: 51–78.

    Article  Google Scholar 

  • Ghysels, E., and A. Hall. 2002. Editors’ Introduction to JBES twentieth anniversary issue on generalized method of moments estimation. Journal of Business and Economic Statistics 20: 441.

    Article  Google Scholar 

  • Gordin, M.I. 1969. The central limit theorem for stationary processes. Soviet Mathematics Doklady 10: 1174–1176.

    Google Scholar 

  • Hall, A.R. 2005. Generalized method of moments. New York: Oxford University Press.

    Google Scholar 

  • Hall, P., and C.C. Heyde. 1980. Martingale limit theory and its application. Boston: Academic Press.

    Google Scholar 

  • Hansen, L.P. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50: 1029–1054.

    Article  Google Scholar 

  • Hansen, L.P. 1985. A method for calculating bound on asymptotic covariance matrices of generalized method of moments estimators. Journal of Econometrics 30: 203–238.

    Article  Google Scholar 

  • Hansen, L.P. 1993. Semiparametric efficiency bounds for linear time-series models. In Models, methods and applications of econometrics: Essays in honor of A.R. Bergstrom, ed. P.C.B. Phillips. Cambridge, MA: Blackwell.

    Google Scholar 

  • Hansen, L.P. 2001. Method of moments. In International encyclopedia of the social and behavior sciences. New York: Elsevier.

    Google Scholar 

  • Hansen, L.P., J. Heaton, and E. Luttmer. 1995. Econometric evaluation of asset pricing models. Review of Financial Studies 8: 237–274.

    Article  Google Scholar 

  • Hansen, L.P., and J.J. Heckman. 1996. The empirical foundations of calibration. Journal of Economic Perspectives 10 (1): 87–104.

    Article  Google Scholar 

  • Hansen, L.P., and R. Jagannathan. 1997. Assessing specification errors in stochastic discount factor models. Journal of Finance 52: 557–590.

    Article  Google Scholar 

  • Hansen, L.P., and K.J. Singleton. 1982. Generalized instrumental variables of nonlinear rational expectations models. Econometrica 50: 1269–1286.

    Article  Google Scholar 

  • Hansen, L.P., and K.J. Singleton. 1996. Efficient estimation of linear asset pricing models with moving average errors. Journal of Business and Economic Statistics 14: 53–68.

    Google Scholar 

  • Hansen, L.P., Heaton, J.C., Lee, J. and Roussanov, N. 2007. Intertemporal substitution and risk aversion. In Handbook of econometrics, vol. 6A, ed. J. Heckman, and E. Leamer. Amsterdam: North-Holland.

    Google Scholar 

  • Hayashi, F., and C. Sims. 1983. Nearly efficient estimation of time-series models with predetermined, but not exogenous, instruments. Econometrica 51: 783–798.

    Article  Google Scholar 

  • Heckman, J.J. 1976. The common structure of statistical methods of truncation, sample selection, and limited dependent variables and a simple estimator of such models. Annals of Economic and Social Measurement 5: 475–492.

    Google Scholar 

  • Kleibergen, F. 2005. Testing parameters in GMM without assuming that they are identified. Econometrica 73: 1103–1123.

    Article  Google Scholar 

  • Newey, W. 1993. Efficient estimation of models with conditional moment restrictions. In Handbook of statistics, vol. 11, ed. G.S. Maddala, C.R. Rao, and H.D. Vinod. Amsterdam: North-Holland.

    Google Scholar 

  • Newey, W. and McFadden, D. 1994. Large sample estimation and hypothesis testing. In Handbook of econometrics, vol. 4, ed. R. Engle, and D. McFadden. Amsterdam: North-Holland.

    Google Scholar 

  • Newey, W.K., and K.D. West. 1987a. Hypothesis testing with efficient method of moments estimation. International Economic Review 28: 777–787.

    Article  Google Scholar 

  • Newey, W.K., and K.D. West. 1987b. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55: 703–708.

    Article  Google Scholar 

  • Ogaki, M. 1993. Generalized method of moments: econometric applications. In Handbook of statistics, vol. 11, ed. G.S. Maddala, C.R. Rao, and H.D. Vinod. Amsterdam: North-Holland.

    Google Scholar 

  • Pagan, A.R. 1984. Econometric issues in the analysis of models with generated regressors. International Economic Review 25: 221–247.

    Article  Google Scholar 

  • Sargan, J.D. 1958. The estimation of economic relationships using instrumental variables. Econometrica 26: 393–415.

    Article  Google Scholar 

  • Sargan, J.D. 1959. The estimation of relationships with autocorrelated residuals by the use of instrumental variables. Journal of the Royal Statistical Society: Series B 21: 91–105.

    Google Scholar 

  • Singleton, K.J. 2006. Empirical dynamic asset pricing: Model specification and econometric assessment. Princeton: Princeton University Press.

    Google Scholar 

  • Stock, J.H., and J.H. Wright. 2000. GMM with weak identification. Econometrica 68: 1055–1096.

    Article  Google Scholar 

  • West, K.D. 2001. On optimal instrumental variables estimation of stationary time series models. International Economic Review 42: 1043–1050.

    Article  Google Scholar 

Download references

Acknowledgments

I greatly appreciate comments from Lionel Melin, Monika Piazzesi, Grace Tsiang, and Francisco Vazquez-Grande. This material is based upon work supported by the National Science Foundation under Award Number SES0519372.

Authors

Editor information

Copyright information

© 2018 Macmillan Publishers Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hansen, L.P. (2018). Generalized Method of Moments Estimation. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95189-5_2486

Download citation

Publish with us

Policies and ethics