The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Generalized Method of Moments Estimation

  • Lars Peter Hansen
Reference work entry


Generalized method of moments estimates econometric models without requiring a full statistical specification. One starts with a set of moment restrictions that depend on data and an unknown parameter vector to be estimated. When there are more moment restrictions than underlying parameters, there is family of such estimators. The tractable form of the large sample properties of this family facilitates efficient estimation and statistical testing. This article motivates the method, presents some of the underlying statistical properties, and discusses implementation.


Calibration Central limit theorems Gauss–Markov theorem Generalized method of moments Identification Instrumental variables Lagrange multipliers Law of large numbers Likelihood Martingales Maximum likelihood Rational expectations models Sequential estimation Statistical inference Stochastic discount factor models Wald test 

JEL Classifications

This is a preview of subscription content, log in to check access.



I greatly appreciate comments from Lionel Melin, Monika Piazzesi, Grace Tsiang, and Francisco Vazquez-Grande. This material is based upon work supported by the National Science Foundation under Award Number SES0519372.


  1. Amemiya, T. 1974. The nonlinear two-stage least-squares estimator. Journal of Econometrics 2: 105–110.CrossRefGoogle Scholar
  2. Arellano, M. 2003. Panel data econometrics. New York: Oxford University Press.CrossRefGoogle Scholar
  3. Bontemps, C., and N. Meddahi. 2005. Testing normality: A GMM approach. Journal of Econometrics 124: 149–186.CrossRefGoogle Scholar
  4. Carrasco, M., and J.P. Florens. 2000. Generalization of GMM to a continuum of moment conditions. Econometric Theory 20: 797–834.CrossRefGoogle Scholar
  5. Chamberlain, G. 1986. Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics 34: 305–334.CrossRefGoogle Scholar
  6. Chernozhukov, V., and H. Hong. 2003. An MCMC approach to classical estimation. Journal of Econometrics 115: 293–346.CrossRefGoogle Scholar
  7. Christiano, L.J., and M. Eichenbaum. 1992. Current real business cycle theories and aggregate labor market fluctuations. American Economic Review 82: 430–450.Google Scholar
  8. Cochrane, J. 2001. Asset pricing. Princeton: Princeton University Press.Google Scholar
  9. Cumby, R.E., J. Huizinga, and M. Obstfeld. 1983. Two-step two-stage least squares estimation in models with rational expectations. Journal of Econometrics 21: 333–335.CrossRefGoogle Scholar
  10. Eichenbaum, M.S., L.P. Hansen, and K.J. Singleton. 1988. A time series analysis of representation agent models of consumption and leisure choice under uncertainty. Quarterly Journal of Economics 103: 51–78.CrossRefGoogle Scholar
  11. Ghysels, E., and A. Hall. 2002. Editors’ Introduction to JBES twentieth anniversary issue on generalized method of moments estimation. Journal of Business and Economic Statistics 20: 441.CrossRefGoogle Scholar
  12. Gordin, M.I. 1969. The central limit theorem for stationary processes. Soviet Mathematics Doklady 10: 1174–1176.Google Scholar
  13. Hall, A.R. 2005. Generalized method of moments. New York: Oxford University Press.Google Scholar
  14. Hall, P., and C.C. Heyde. 1980. Martingale limit theory and its application. Boston: Academic Press.Google Scholar
  15. Hansen, L.P. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50: 1029–1054.CrossRefGoogle Scholar
  16. Hansen, L.P. 1985. A method for calculating bound on asymptotic covariance matrices of generalized method of moments estimators. Journal of Econometrics 30: 203–238.CrossRefGoogle Scholar
  17. Hansen, L.P. 1993. Semiparametric efficiency bounds for linear time-series models. In Models, methods and applications of econometrics: Essays in honor of A.R. Bergstrom, ed. P.C.B. Phillips. Cambridge, MA: Blackwell.Google Scholar
  18. Hansen, L.P. 2001. Method of moments. In International encyclopedia of the social and behavior sciences. New York: Elsevier.Google Scholar
  19. Hansen, L.P., J. Heaton, and E. Luttmer. 1995. Econometric evaluation of asset pricing models. Review of Financial Studies 8: 237–274.CrossRefGoogle Scholar
  20. Hansen, L.P., and J.J. Heckman. 1996. The empirical foundations of calibration. Journal of Economic Perspectives 10 (1): 87–104.CrossRefGoogle Scholar
  21. Hansen, L.P., and R. Jagannathan. 1997. Assessing specification errors in stochastic discount factor models. Journal of Finance 52: 557–590.CrossRefGoogle Scholar
  22. Hansen, L.P., and K.J. Singleton. 1982. Generalized instrumental variables of nonlinear rational expectations models. Econometrica 50: 1269–1286.CrossRefGoogle Scholar
  23. Hansen, L.P., and K.J. Singleton. 1996. Efficient estimation of linear asset pricing models with moving average errors. Journal of Business and Economic Statistics 14: 53–68.Google Scholar
  24. Hansen, L.P., Heaton, J.C., Lee, J. and Roussanov, N. 2007. Intertemporal substitution and risk aversion. In Handbook of econometrics, vol. 6A, ed. J. Heckman, and E. Leamer. Amsterdam: North-Holland.Google Scholar
  25. Hayashi, F., and C. Sims. 1983. Nearly efficient estimation of time-series models with predetermined, but not exogenous, instruments. Econometrica 51: 783–798.CrossRefGoogle Scholar
  26. Heckman, J.J. 1976. The common structure of statistical methods of truncation, sample selection, and limited dependent variables and a simple estimator of such models. Annals of Economic and Social Measurement 5: 475–492.Google Scholar
  27. Kleibergen, F. 2005. Testing parameters in GMM without assuming that they are identified. Econometrica 73: 1103–1123.CrossRefGoogle Scholar
  28. Newey, W. 1993. Efficient estimation of models with conditional moment restrictions. In Handbook of statistics, vol. 11, ed. G.S. Maddala, C.R. Rao, and H.D. Vinod. Amsterdam: North-Holland.Google Scholar
  29. Newey, W. and McFadden, D. 1994. Large sample estimation and hypothesis testing. In Handbook of econometrics, vol. 4, ed. R. Engle, and D. McFadden. Amsterdam: North-Holland.Google Scholar
  30. Newey, W.K., and K.D. West. 1987a. Hypothesis testing with efficient method of moments estimation. International Economic Review 28: 777–787.CrossRefGoogle Scholar
  31. Newey, W.K., and K.D. West. 1987b. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55: 703–708.CrossRefGoogle Scholar
  32. Ogaki, M. 1993. Generalized method of moments: econometric applications. In Handbook of statistics, vol. 11, ed. G.S. Maddala, C.R. Rao, and H.D. Vinod. Amsterdam: North-Holland.Google Scholar
  33. Pagan, A.R. 1984. Econometric issues in the analysis of models with generated regressors. International Economic Review 25: 221–247.CrossRefGoogle Scholar
  34. Sargan, J.D. 1958. The estimation of economic relationships using instrumental variables. Econometrica 26: 393–415.CrossRefGoogle Scholar
  35. Sargan, J.D. 1959. The estimation of relationships with autocorrelated residuals by the use of instrumental variables. Journal of the Royal Statistical Society: Series B 21: 91–105.Google Scholar
  36. Singleton, K.J. 2006. Empirical dynamic asset pricing: Model specification and econometric assessment. Princeton: Princeton University Press.Google Scholar
  37. Stock, J.H., and J.H. Wright. 2000. GMM with weak identification. Econometrica 68: 1055–1096.CrossRefGoogle Scholar
  38. West, K.D. 2001. On optimal instrumental variables estimation of stationary time series models. International Economic Review 42: 1043–1050.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Lars Peter Hansen

There are no affiliations available