The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Ambiguity and Ambiguity Aversion

  • Marciano Siniscalchi
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2439

Abstract

Experimental evidence strongly suggests that subjects facing a decision under uncertainty often find it difficult to assess the relative likelihood of certain events; decision theorists deem such events ‘ambiguous’. Furthermore, subjects generally dislike options (acts) whose final outcome depends upon the realization of such ambiguous events; that is, they are ‘ambiguity-averse’. This article surveys the main decision-theoretic models developed since the mid-1980s to accommodate ambiguity and ambiguity aversion, including Choquet-expected utility (Schmeidler. Econometrica 57: 571–87, 1989) and maxmin expected utility (Gilboa and Schmeidler. J Math Econ 18: 141–53, 1989). More recent developments in the theory of ambiguity are also briefly summarized.

Keywords

Ambiguity Ambiguity aversion Bernoulli utility function Choice under uncertainty Choquet-expected utility Decision theory Decision weights Ellsberg paradox Incomplete preferences Maximum likelihood Maxmin expected utility Multiple priors Preference reversals Probability Savage, L Second-order probabilities Subjective expected utility Sure-thing principle von Neumann–Morgenstern utility function 

JEL Classifications

D1 D8 
This is a preview of subscription content, log in to check access

Bibliography

  1. Aliprantis, C., and K. Border. 1994. Infinite dimensional analysis. Berlin: Springer.CrossRefGoogle Scholar
  2. Anscombe, F., and R. Aumann. 1963. A definition of subjective probability. Annals of Mathematical Statistics 34: 199–205.CrossRefGoogle Scholar
  3. Bewley, T. 2002. Knightian decision theory: Part I. Decisions in Economics and Finance 25(2): 79–110.CrossRefGoogle Scholar
  4. Camerer, C., and Martin Weber. 1992. Recent developments in modeling preferences: Uncertainty and ambiguity. Journal of Risk and Uncertainty 5: 325–370.CrossRefGoogle Scholar
  5. Casadeus-Masanell, R., P. Klibanoff, and E. Ozdenoren. 2000. Maxmin expected utility over savage acts with a set of priors. Journal of Economic Theory 92: 33–65.Google Scholar
  6. Chew, H., and E. Karni. 1994. Choquet expected utility with a finite state space: Commutativity and act-dependence. Journal of Economic Theory 62: 469–479.CrossRefGoogle Scholar
  7. Choquet, G. 1953. Theory of capacities. Annales de l’Institut Fourier (Grenoble) 5: 131–295.CrossRefGoogle Scholar
  8. Dempster, A. 1968. A generalization of Bayesian inference. Journal of the Royal Statistical Society, Series B 30: 205–247.Google Scholar
  9. Ellsberg, D. 1961. Risk, ambiguity, and the savage axioms. Quarterly Journal of Economics 75: 643–669.CrossRefGoogle Scholar
  10. Epstein, L. 1999. A definition of uncertainty aversion. Review of Economic Studies 66: 579–608.CrossRefGoogle Scholar
  11. Epstein, L., and M. Schneider. 2001. Recursive multiple-priors. Journal of Economic Theory 113: 1–31.CrossRefGoogle Scholar
  12. Epstein, L., and J. Zhang. 2001. Subjective probabilities on subjectively unambiguous events. Econometrica 69: 265–306.CrossRefGoogle Scholar
  13. Ergin, H., and F. Gul. 2004. A subjective theory of compound lotteries. Mimeo. Econometric society 2004 North American summer meetings, No. 152.Google Scholar
  14. Ghirardato, P., and M. Marinacci. 2002. Ambiguity made precise: A comparative foundation. Journal of Economic Theory 102: 251–289.CrossRefGoogle Scholar
  15. Ghirardato, P., F. Maccheroni, M. Marinacci, and M. Siniscalchi. 2003. A subjective spin on roulette wheels. Econometrica 71: 1897–1908.CrossRefGoogle Scholar
  16. Ghirardato, P., F. Maccheroni, and M. Marinacci. 2004. Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory 118: 133–173.CrossRefGoogle Scholar
  17. Gilboa, I. 1987. Expected utility with purely subjective non-additive probabilities. Journal of Mathematical Economics 16: 65–88.CrossRefGoogle Scholar
  18. Gilboa, I., and D. Schmeidler. 1989. Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics 18: 141–153.CrossRefGoogle Scholar
  19. Gilboa, I., and D. Schmeidler. 1993. Updating ambiguous beliefs. Journal of Economic Theory 59: 33–49.CrossRefGoogle Scholar
  20. Jaffray, J.-Y. 1994. Dynamic decision making with belief functions. In Advances in the Dempster–Shafer theory of evidence, ed. R. Yager, J. Kacprzyk, and M. Fedrizzi. New York: Wiley.Google Scholar
  21. Klibanoff, P. 2001. Characterizing uncertainty aversion through preference for mixtures. Social Choice and Welfare 18: 289–301.CrossRefGoogle Scholar
  22. Klibanoff, P., M. Marinacci, and S. Mukerji. 2005. A smooth model of decision making under ambiguity. Econometrica 73: 1849–1892.CrossRefGoogle Scholar
  23. Luce, R., and H. Raiffa. 1957. Games and decisions. New York: Wiley.Google Scholar
  24. Machina, M., and D. Schmeidler. 1992. A more robust definition of subjective probability. Econometrica 60: 745–780.CrossRefGoogle Scholar
  25. Savage, L. 1954. The foundations of statistics. New York: Wiley.Google Scholar
  26. Schmeidler, D. 1986. Integral representation without additivity. Proceedings of the American Mathematical Society 97: 255–261.CrossRefGoogle Scholar
  27. Schmeidler, D. 1989. Subjective probability and expected utility without additivity. Econometrica 57: 571–587.CrossRefGoogle Scholar
  28. Shafer, G. 1976. A mathematical theory of evidence. Princeton: Princeton University Press.Google Scholar
  29. Siniscalchi, M. 2006. A behavioral characterization of plausible priors. Journal of Economic Theory 128(1): 91–135.CrossRefGoogle Scholar
  30. Wang, G. 2003. Conditional preferences and updating. Journal of Economic Theory 108: 286–321.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Marciano Siniscalchi
    • 1
  1. 1.