The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Epistemic Game Theory: Beliefs and Types

  • Marciano Siniscalchi
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2375

Abstract

Modelling what each agent believes about her opponents, what she believes her opponents believe about her, and so on, plays a prominent role in game theory and its applications. This article describes Harsanyi’s formalism of type spaces, which provides a simple, elegant representation of probabilistic belief hierarchies. A special emphasis is placed on the construction of rich type spaces, which can generate all ‘reasonable’ belief hierarchies in a given game. Recent developments, employing richer representation of beliefs, are also considered.

Keywords

Belief hierarchies Common knowledge Epistemic game theory: beliefs and types Harsanyi, J.C. Kolmogorov’s extension theorem Monotonicity Polish spaces Preferences Recursive preferences Type spaces Universal type space 

JEL Classifications

C7 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Ahn, D. 2007. Hierarchies of ambiguous beliefs. Journal of Economic Theory 136: 286–301.CrossRefGoogle Scholar
  2. Aliprantis, C., and K. Border. 1999. Infinite dimensional analysis. 2nd ed. Berlin: Springer.CrossRefGoogle Scholar
  3. Armbruster, W., and W. Böge. 1979. Bayesian game theory. In Game theory and related topics, ed. O. Moeschlin and D. Pallaschke. Amsterdam: North-Holland.Google Scholar
  4. Aumann, R. 1976. Agreeing to disagree. Annals of Statistics 4: 1236–1239.CrossRefGoogle Scholar
  5. Battigalli, P., and M. Siniscalchi. 1999. Hierarchies of conditional beliefs and interactive epistemology in dynamic games. Journal of Economic Theory 88: 188–230.CrossRefGoogle Scholar
  6. Battigalli, P., and M. Siniscalchi. 2002. Strong belief and forward induction reasoning. Journal of Economic Theory 106: 356–391.CrossRefGoogle Scholar
  7. Bergemann, D., and S. Morris. 2005. Robust mechanism design. Econometrica 73: 1521–1534.CrossRefGoogle Scholar
  8. Blume, L., A. Brandenburger, and E. Dekel. 1991. Lexicographic probabilities and choice under uncertainty. Econometrica 59: 61–79.CrossRefGoogle Scholar
  9. Böge, W., and T. Eisele. 1979. On solutions of Bayesian games. International Journal of Game Theory 8: 193–215.CrossRefGoogle Scholar
  10. Brandenburger, A., and E. Dekel. 1993. Hierarchies of beliefs and common knowledge. Journal of Economic Theory 59: 189–198.CrossRefGoogle Scholar
  11. Brandenburger, A., Friedenberg, A. and Keisler, H.J. 2006. Admissibility in games. Unpublished, Stern School of Business, New York University.Google Scholar
  12. Brandenburger, A., and J. Keisler. 2006. An impossibility theorem on beliefs in games. Studia Logica 84: 211–240.CrossRefGoogle Scholar
  13. Di Tillio, A. 2006. Subjective expected utility in games. Working Paper No. 311, IGIER, Università Bocconi.Google Scholar
  14. Ellsberg, D. 1961. Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics 75: 643–669.CrossRefGoogle Scholar
  15. Epstein, L., and T. Wang. 1996. Beliefs about beliefs without probabilities. Econometrica 64: 1343–1373.CrossRefGoogle Scholar
  16. Epstein, L., and S. Zin. 1989. Substitution, risk aversion, and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica 57: 937–969.CrossRefGoogle Scholar
  17. Gilboa, I., and D. Schmeidler. 1989. Maxmin-expected utility with a non-unique prior. Journal of Mathematical Economics 18: 141–153.CrossRefGoogle Scholar
  18. Gul, F., and W. Pesendorfer. 2004. Self-control and the theory of consumption. Econometrica 72: 119–158.CrossRefGoogle Scholar
  19. Harsanyi, J. 1967–8. Games of incomplete information played by Bayesian players. Parts I, II, III. Management Science 14:159–182, 320–334, 486–502.Google Scholar
  20. Heifetz, A., and D. Samet. 1998a. Knowledge spaces with arbitrarily high rank. Games and Economic 22: 260–273.CrossRefGoogle Scholar
  21. Heifetz, A., and D. Samet. 1998b. Topology-free typology of beliefs. Journal of Economic Theory 82: 324–381.CrossRefGoogle Scholar
  22. Mariotti, T., M. Meier, and M. Piccione. 2005. Hierarchies of beliefs for compact possibility models. Journal of Mathematical Economics 41: 303–324.CrossRefGoogle Scholar
  23. Meier, M. 2005. On the nonexistence of universal information structures. Journal of Economic Theory 122: 132–139.CrossRefGoogle Scholar
  24. Mertens, J.F., and S. Zamir. 1985. Formulation of Bayesian analysis for games with incomplete information. International Journal of Game Theory 14: 1–29.CrossRefGoogle Scholar
  25. Morris, S., and H. Shin. 2003. Global games: Theory and applications. In Advances in economics and econometrics (Proceedings of the eight world congress of the econometric society), ed. M. Dewatripont, L. Hansen, and S. Turnovsky. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Marciano Siniscalchi
    • 1
  1. 1.