The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Neoclassical Growth Theory (New Perspectives)

  • Rodolfo E. Manuelli
Reference work entry


The neoclassical growth model captures the basic trade-off between saving and investment. It has proven to be a useful tool to study development paths, and the interactions of technology shocks, money and fertility choices with growth.


Competitive equilibrium Convexity Endogenous growth Fertility Human capital accumulation Infinite horizons Innovation Marginal rate of transformation Neoclassical growth theory Optimal development paths Optimal quantity of money Optimal taxation Population growth Recursive equilibrium Representative agent Solow–Swan growth model Technical change Technology shocks Transversality condition Turnpike property 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Azariadis, C. 1993. Intertemporal macroeconomics. Cambridge: Blackwell Publishers.Google Scholar
  2. Barro, R.J., and G.S. Becker. 1989. Fertility choice in a model of economic growth. Econometrica 57: 481–501.CrossRefGoogle Scholar
  3. Becker, G.S., and R.J. Barro. 1988. A reformulation of the economic theory of fertility. Quarterly Journal of Economics 103: 1–25.CrossRefGoogle Scholar
  4. Ben Porath, Y. 1967. The production of human capital and the life cycle of earnings. Journal of Political Economy 75: 352–365.CrossRefGoogle Scholar
  5. Bils, M., and P. Klenow. 2000. Does schooling cause growth? American Economic Review 90: 1160–1183.CrossRefGoogle Scholar
  6. Boldrin, M., and L.E. Jones. 2005. Fertility and social security. Staff Report No. 359, Federal Reserve Bank of Minneapolis.Google Scholar
  7. Boldrin, M., and L. Montrucchio. 1986. On the indeterminacy of capital accumulation paths. Journal of Economic Theory 40: 26–39.CrossRefGoogle Scholar
  8. Brock, W.A., and L.J. Mirman. 1972. Optimal economic growth and uncertainty. Journal of Economic Theory 4: 479–513.CrossRefGoogle Scholar
  9. Burmeister, E. 1980. Capital theory and dynamics. Cambridge: Cambridge University Press.Google Scholar
  10. Cass, D. 1965. Optimum growth in an aggregative model of capital accumulation. Review of Economic Studies 32: 233–240.CrossRefGoogle Scholar
  11. Chamley, C. 1986. Optimal taxation of capital income in general equilibrium with infinite lifetimes. Econometrica 54: 607–622.CrossRefGoogle Scholar
  12. Cooley, T.F. 1995. Frontiers of business cycle research. Princeton: Princeton University Press.Google Scholar
  13. Correia, I. 1996. Should capital be taxed in the steady state? Journal of Public Economics 60: 147–151.CrossRefGoogle Scholar
  14. Debreu, G. 1954. Valuation equilibrium and Pareto optimum. Proceedings of the National Academy of Sciences 40: 588–592.CrossRefGoogle Scholar
  15. Debreu, G. 1959. The theory of value. New Haven/London: Yale University Press.Google Scholar
  16. Diamond, P.A. 1965. National debt in a neoclassical growth model. American Economic Review 55: 1126–1150.Google Scholar
  17. Doepke, M. 2005. Child mortality and fertility decline: Does the Barro–Becker model fit the facts? Journal of Population Economics 18: 337–366.CrossRefGoogle Scholar
  18. Donaldson, J.B., and R. Mehra. 1983. Stochastic growth with correlated production shocks. Journal of Economic Theory 29: 282–312.CrossRefGoogle Scholar
  19. Fischer, S. 1979. Capital accumulation on the transition path in a monetary optimizing model. Econometrica 47: 1433–1439.CrossRefGoogle Scholar
  20. Friedman, M. 1969. The optimum supply of money. In The optimum supply of money and other essays, ed. M. Friedman. Chicago: Aldine.Google Scholar
  21. Jones, L.E., R.E. Manuelli, and P.E. Rossi. 1997. On the optimal taxation of capital income. Journal of Economic Theory 73: 93–117.CrossRefGoogle Scholar
  22. Jones, L.E., R.E. Manuelli, and H. Siu. 2005. Fluctuations in convex models of endogenous growth II: business cycle properties. Review of Economic Dynamics 8: 805–828.CrossRefGoogle Scholar
  23. Judd, K.J. 1985. Redistributive taxation in a perfect foresight model. Journal of Public Economics 28: 59–84.CrossRefGoogle Scholar
  24. Klenow, P., and A. Rodríguez-Clare. 1997. The neoclassical revival in growth economics: Has it gone too far? In Macroeconomics annual 1997, ed. B. Bernanke and J. Rotenberg. Cambridge, MA: MIT Press.Google Scholar
  25. Koopmans, T.J. 1965. On the concept of optimal economic growth. In The econometric approach to development planning. Chicago: Rand McNally.Google Scholar
  26. Manuelli, R.E., and A. Seshadri. 2007a. Human capital and the wealth of nations. Working paper, University of Wisconsin.Google Scholar
  27. Manuelli, R.E., and A. Seshadri. 2007b. Explaining international fertility differences. Working paper, University of Wisconsin.Google Scholar
  28. McKenzie, L.W. 1986. Optimal economic growth, Turnpike theorems and comparative dynamics. In Handbook of mathematical economics, ed. K.J. Arrow and M.D. Intriligator, Vol. 3. Amsterdam: North-Holland.Google Scholar
  29. Prescott, E.J., and R. Mehra. 1980. Recursive competitive equilibrium: the case of homogeneous households. Econometrica 48: 1365–1379.CrossRefGoogle Scholar
  30. Ramsey, F.P. 1928. A mathematical theory of saving. Economic Journal 28: 543–559.CrossRefGoogle Scholar
  31. Sidrauski, M. 1967. Inflation and economic growth. Journal of Political Economy 75: 796–810.CrossRefGoogle Scholar
  32. Stokey, N.L., and R.E. Lucas. (with E.C. Prescott). 1989. Recursive methods in economic dynamics. Cambridge, MA: Harvard University Press.Google Scholar
  33. Turnovsky, S.J., and W.A. Brock. 1980. Time consistency and optimal government policies in perfect Foresight equilibrium. Journal of Public Economics 13: 183–212.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Rodolfo E. Manuelli
    • 1
  1. 1.