The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

McFadden, Daniel (Born 1937)

  • John Rust
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2239

Abstract

This article reviews the contributions of Daniel L. McFadden, 2000 co-recipient of the Nobel Prize in Economics. The article focuses on his seminal contributions to the theoretical and econometric literatures on discrete choice.

Keywords

Curse of dimensionality Discrete choice Duality Generalized extreme value Independence of irrelevant alternatives Infinite horizons Logit models of individual choice Mathematical psychology Maximum likelihood McFadden, D. L. Method of simulated moments Monte Carlo methods Multinomial logit model Multinomial probit model Neural networks Overlapping generations models Probabilistic choice theory Random utility models Revealed preference Simulation-based estimation 

JEL Classifications

B31 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Anderson, S.P., A. De Palma, and J.F. Thisse. 1992. Discrete choice theory of product differentiation. Cambridge: MIT Press.Google Scholar
  2. Bajari, P., H. Hong, J. Krainer, and D. Nekipelov. 2005. Estimating static models of strategic interactions. Manuscript, University of Michigan.Google Scholar
  3. Berkovec, J. 1985. New car sales and used car stocks: A model of the automobile market. RAND Journal of Economics 16: 195–214.CrossRefGoogle Scholar
  4. Berry, S., J. Levinsohn, and A. Pakes. 1995. Automobile prices in market equilibrium. Econometrica 63: 841–890.CrossRefGoogle Scholar
  5. Block, H., and J. Marschak. 1960. Random orderings and stochastic theories of response. In Contributions to probability and statistics, ed. I. Olkin. Stanford: Stanford University Press.Google Scholar
  6. Cosslett, S.R. 1981. Efficient estimation of discrete-choice models. In Structural analysis of discrete data with econometric applications, ed. C.F. Manski and D. McFadden. Cambridge, MA: MIT Press.Google Scholar
  7. Dagsvik, J.K. 1983. Discrete dynamic choice: An extension of the choice models of Luce and Thurstone. Journal of Mathematical Psychology 27: 1–43.CrossRefGoogle Scholar
  8. Dagsvik, J.K. 1994. Discrete and continuous choice, max-stable processes and independence from irrelevant attributes. Econometrica 62: 1179–1205.CrossRefGoogle Scholar
  9. Dagsvik, J.K. 1995. How large is the class of generalized extreme value models? Journal of Mathematical Psychology 39: 90–98.CrossRefGoogle Scholar
  10. Debreu, G. 1960. Review of R.D. Luce ‘individual choice behavior’. American Economic Review 50: 186–188.Google Scholar
  11. Dubin, J., and D. McFadden. 1984. An econometric analysis of residential electric appliance holdings and consumption. Econometrica 52: 345–362.CrossRefGoogle Scholar
  12. Eckstein, Z., and K. Wolpin. 1989. The specification and estimation of dynamic stochastic discrete choice models. Journal of Human Resources 24: 562–598.CrossRefGoogle Scholar
  13. Goldberg, P. 1995. Product differentiation and oligopoly in international markets: I the case of the U.S. automobile industry. Econometrica 63: 891–951.CrossRefGoogle Scholar
  14. Hajivassiliou, V., and D.L. McFadden. 1998. The method of simulated scores for the estimation of LDV models. Econometrica 66: 863–896.CrossRefGoogle Scholar
  15. Hajivassiliou, V.A., and P.A. Ruud. 1994. Classical estimation methods for LDV models using simulation. In Handbook of econometrics, ed. R.F. Engle and D.L. McFadden, vol. IV. Amsterdam: Elsevier.Google Scholar
  16. Hannemann, M. 1984. Discrete/continuous models of consumer demand. Econometrica 52: 541–562.CrossRefGoogle Scholar
  17. Hausman, J., and D. Wise. 1978. A conditional probit model of qualitative choice: Discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica 46: 403–426.CrossRefGoogle Scholar
  18. Heckman, J.J. 1981. Statistical models for discrete panel data. In Structural analysis of discrete data with econometric applications, ed. C.F. Manski and D. McFadden. Cambridge, MA: MIT Press.Google Scholar
  19. Luce, R.D. 1959. Individual choice behavior: A theoretical analysis. New York: Wiley.Google Scholar
  20. Manski, C.F. 1985. Semiparametric estimation of discrete response: Asymptotics of the maximum score estimator. Journal of Econometrics 27: 303–333.CrossRefGoogle Scholar
  21. Manski, C.F. 2001. Dan McFadden and the econometric analysis of discrete choice. Scandinavian Journal of Economics 103: 217–229.CrossRefGoogle Scholar
  22. Pakes, A., and D. Pollard. 1989. Simulation and the asymptotics of optimization estimators. Econometrica 57: 1027–1057.CrossRefGoogle Scholar
  23. Rust, J. 1994. Structural estimation of Markov decision processes. In Handbook of Econometrics, ed. R.F. Engle and D.L. McFadden, vol. 4. Amsterdam: Elsevier.Google Scholar
  24. Thurstone, L.L. 1927. Psychophysical analysis. American Journal of Psychology 38: 368–389.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • John Rust
    • 1
  1. 1.