The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Hierarchical Bayes Models

  • Siddhartha Chib
  • Edward Greenberg
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2230

Abstract

The standard Bayesian model is defined in terms of an outcome model and the prior density of the parameters. The latter depends on parameters called hyperparameters. A hierarchical Bayes model results when one or more of the hyperparameters are assumed to be random and modelled probabilistically. We discuss canonical versions of these models for the case when both the parameters and the hyperparameters are modelled in groups or blocks, provide relevant examples, and discuss how inference by Markov chain Monte Carlo methods makes even the fitting of complex hierarchical models practical and simple. The problem of model comparisons is also addressed.

Keywords

Bayes’ th Component densities Exchangeability Hierarchical Bayes models Hyperparameters Marginal likelihood Markov chain Monte Carlo methods 

JEL Classifications

C11 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Albert, J.H., and S. Chib. 1993. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88: 669–679.CrossRefGoogle Scholar
  2. Berger, J. 1985. Statistical decision theory and Bayesian analysis. New York: Springer.CrossRefGoogle Scholar
  3. Chib, S. 1995. Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90: 1313–1321.CrossRefGoogle Scholar
  4. Chib, S., and B.P. Carlin. 1999. On MCMC sampling in hierarchical longitudinal models. Statistics and Computing 9: 17–26.CrossRefGoogle Scholar
  5. Chib, S., and E. Greenberg. 1995. Understanding the metropolis-Hastings algorithm. American Statistician 49: 327–335.Google Scholar
  6. Chib, S., and I. Jeliazkov. 2001. Marginal likelihood from the metropolis-Hastings output. Journal of the American Statistical Association 96: 270–281.CrossRefGoogle Scholar
  7. Gelfand, A.E., and A.F.M. Smith. 1990. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85: 398–409.CrossRefGoogle Scholar
  8. Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721–741.CrossRefGoogle Scholar
  9. Goel, P.K., and M.H. Degroot. 1981. Information about hyperparameters in hierarchical models. Journal of the American Statistical Association 76: 140–147.Google Scholar
  10. Lehmann, E., and G. Casella. 1998. Theory of point estimation. New York: Springer.Google Scholar
  11. Lindley, D.V., and A.F.M. Smith. 1972. Bayes estimates for the linear model. Journal of the Royal Statistical Society B 34: 1–41.Google Scholar
  12. Tanner, M.A., and W.H. Wong. 1987. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 82: 528–550.CrossRefGoogle Scholar
  13. Tierney, L. 1994. Markov chains for exploring posterior distributions (with discussion). Annals of Statistics 21: 1701–1762.CrossRefGoogle Scholar
  14. Wakefield, J.C., A.F.M. Smith, A. Racine-Poon, and A.E. Gelfand. 1994. Bayesian analysis of linear and nonlinear population models using the Gibbs sampler. Applied Statistics 43: 201–221.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Siddhartha Chib
    • 1
  • Edward Greenberg
    • 1
  1. 1.