The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Empirical Likelihood

  • Yuichi Kitamura
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2105

Abstract

Empirical likelihood (EL) is a method for estimation and inference without making distributional assumptions. Viewed as a nonparametric maximum likelihood estimation procedure (NPMLE), it approximates the unknown distribution function with a discrete distribution, then applies the ML estimation method. Alternatively, EL can be regarded as a minimum divergence estimation procedure. EL works well for estimating moment condition models, though it applies to other models as well. The large deviation principle (LDP) and other techniques show that EL has many optimality properties.

Keywords

Blockwise empirical likelihood Empirical likelihood Empirical likelihood ratio Generalized empirical likelihood Generalized method of moments Kernel regression technique Lagrange multiplier Large deviation principle Maximum likelihood Nonparametric maximum likelihood estimation Semiparametric estimation Vector autoregressions 

JEL Classifications

C14 
This is a preview of subscription content, log in to check access

Bibliography

  1. Borwein, J.M., and A.S. Lewis. 1991. Duality relationships for entropy-type minimization problems. SIAM Journal of Control and Optimization 29: 325–338.CrossRefGoogle Scholar
  2. DiCiccio, T., P. Hall, and J. Romano. 1991. Empirical likelihood is Bartlettcorrectable. Annals of Statistics 19: 1053–1061.CrossRefGoogle Scholar
  3. Donald, S.G., G.W. Imbens, and W.K. Newey. 2003. Empirical likelihood estimation and consistent tests with conditional moment restrictions. Journal of Econometrics 117: 55–93.CrossRefGoogle Scholar
  4. Hansen, L.P., J. Heaton, and A. Yaron. 1996. Finite-sample properties of some alternative GMM estimators. Journal of Business and Economic Statistics 14: 262–280.Google Scholar
  5. Imbens, G.W. 1997. One-step estimators for over-identified generalized method of moments models. Review of Economic Studies 64: 359–383.CrossRefGoogle Scholar
  6. Imbens, G.W., R.H. Spady, and P. Johnson. 1998. Information theoretic approaches to inference in moment condition models. Econometrica 66: 333–357.CrossRefGoogle Scholar
  7. Kitamura, Y. 1997. Empirical likelihood methods with weakly dependent processes. Annals of Statistics 25: 2084–2102.CrossRefGoogle Scholar
  8. Kitamura, Y. 2001. Asymptotic optimality of empirical likelihood for testing moment restrictions. Econometrica 69: 1661–1672.CrossRefGoogle Scholar
  9. Kitamura, Y. 2006. Empirical likelihood methods in econometrics: theory and practice. In Advances in economics and econometrics: Theory and applications, ninth world congress, ed. R. Blundell, W.K. Newey, and T. Persson. Cambridge: Cambridge University Press.Google Scholar
  10. Kitamura, Y., and T. Otsu. 2005. Minimax estimation and testing for moment condition models via large deviations. Manuscript, Department of Economics, Yale University.Google Scholar
  11. Kitamura, Y., and M. Stutzer. 1997. An information theoretic alternative to generalized method of moments estimation. Econometrica 65: 861–874.CrossRefGoogle Scholar
  12. Kitamura, Y., G. Tripathi, and H. Ahn. 2004. Empirical likelihood based inference in conditional moment restriction models. Econometrica 72: 1667–1714.CrossRefGoogle Scholar
  13. Newey, W.K., and R.J. Smith. 2004. Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 72: 219–255.CrossRefGoogle Scholar
  14. Owen, A. 1988. Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75: 237–249.CrossRefGoogle Scholar
  15. Owen, A. 2001. Empirical likelihood. New York: Chapman and Hall/CRC.CrossRefGoogle Scholar
  16. Puhalskii, A., and V. Spokoiny. 1998. On large-deviation efficiency in statistical inference. Bernoulli 4: 203–272.CrossRefGoogle Scholar
  17. Qin, J., and J. Lawless. 1994. Empirical likelihood and general estimating equations. Annals of Statistics 22: 300–325.CrossRefGoogle Scholar
  18. Read, T.R.C., and N.A.C. Cressie. 1988. Goodness-of-fit statistics for discrete multivariate data. Berlin: Springer.CrossRefGoogle Scholar
  19. Smith, R.J. 1997. Alternative semi-parametric likelihood approaches to generalized method of moments estimation. Economic Journal 107: 503–519.CrossRefGoogle Scholar
  20. Smith, R.J. 2004. GEL criteria for moment condition models. Working paper: University of Warwick.CrossRefGoogle Scholar
  21. Tripathi, G., and Y. Kitamura. 2003. Testing conditional moment restrictions. Annals of Statistics 31: 2059–2095.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Yuichi Kitamura
    • 1
  1. 1.