Skip to main content

Non-linear Panel Data Models

  • Reference work entry
  • First Online:
The New Palgrave Dictionary of Economics
  • 73 Accesses

Abstract

Panel or longitudinal data are becoming increasingly popular in applied work as they offer a number of advantages over pure cross-sectional or pure time-series data. They allow researchers to model unobserved heterogeneity at the level of the observational unit, where the latter may be an individual, a household, a firm or a country. This article describes several estimation methods that are available for nonlinear panel data models, that is, models which are nonlinear in the parameters of interest and which include models that arise frequently in applied work, such as discrete choice models and limited dependent variable models, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 8,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Ahn, H., and J.L. Powell. 1993. Semiparametric estimation of censored selection models with a nonparametric selection mechanism. Journal of Econometrics 58: 3–29.

    Article  Google Scholar 

  • Andersen, E. 1970. Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society, Series B 32: 283–301.

    Google Scholar 

  • Anderson, T., and C. Hsiao. 1981. Estimation of dynamic models with error components. Journal of the American Statistical Association 76(375): 598–606.

    Article  Google Scholar 

  • Butler, J.S., and R. Moffitt. 1982. A computationally efficient quadrature procedure for the one-factor multinomial probit model. Econometrica 50: 761–764.

    Article  Google Scholar 

  • Chamberlain, G. 1984. Panel data. In Handbook of econometrics, ed. Z. Griliches and M. Intrilligator, Vol. 2. Amsterdam: North-Holland.

    Google Scholar 

  • Chamberlain, G. 1985. Heterogeneity, omitted variable bias, and duration dependence. In Longitudinal analysis of labor market data, ed. J.J. Heckman and B. Singer. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fristedt, B., and L. Gray. 1997. A modern approach to probability theory. Boston: Birkhauser.

    Book  Google Scholar 

  • Honoré, B.E. 1992. Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects. Econometrica 60: 533–565.

    Article  Google Scholar 

  • Honoré, B.E. 1993. Orthogonality conditions for Tobit models with fixed effects and lagged dependent variables. Journal of Econometrics 59: 35–61.

    Article  Google Scholar 

  • Honoré, B.E., and E. Kyriazidou. 2000a. Panel data discrete choice models with lagged dependent variables. Econometrica 68: 839–874.

    Article  Google Scholar 

  • Honoré, B.E., and E. Kyriazidou. 2000b. Estimation of Tobit-type models with individual specific effects. Econometric Reviews 19: 341–366.

    Article  Google Scholar 

  • Hu, L. 2002. Estimation of a censored dynamic panel data model. Econometrica 70: 2499–2517.

    Article  Google Scholar 

  • Kyriazidou, E. 1997. Estimation of a panel data sample selection model. Econometrica 65: 1335–1364.

    Article  Google Scholar 

  • Kyriazidou, E. 2001. Estimation of dynamic panel data sample selection models. Review of Economic Studies 68: 543–572.

    Article  Google Scholar 

  • Magnac, T. 2000. Subsidised training and youth employment: Distinguishing unobserved heterogeneity from state dependence in labour market histories. Economic Journal 110: 805–837.

    Article  Google Scholar 

  • Manski, C. 1987. Semiparametric analysis of random effects linear models from binary panel data. Econometrica 55: 357–362.

    Article  Google Scholar 

  • Newey, W. 1994. The asymptotic variance of semiparametric estimators. Econometrica 62: 1349–1382.

    Article  Google Scholar 

  • Neyman, J., and E.L. Scott. 1948. Consistent estimation from partially consistent observations. Econometrica 16: 1–32.

    Article  Google Scholar 

  • Powell, J.L. 2001. Semiparametric estimation of bivariate latent variable models. In Nonlinear statistical modeling: Proceedings of the thirteenth International Symposium in Economic Theory and Econometrics: Essays in honor of Takeshi Amemiya, ed. C. Hsiao, K. Morimune, and J.L. Powell. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wooldridge, J.M. 2000. A framework for estimating dynamic, unobserved effects panel data models with possible feedback to future explanatory variables. Economics Letters 68: 245–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Copyright information

© 2018 Macmillan Publishers Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kyriazidou, E. (2018). Non-linear Panel Data Models. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95189-5_2094

Download citation

Publish with us

Policies and ethics