The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Growth Models, Multisector

  • W. A. Brock
  • W. D. Dechert
Reference work entry


Multisector growth models have been increasingly used since the 1980s. The duality between growth models and dynamic general equilibrium models renders the multisector growth model ideal for the analysis of efficient intertemporal resource allocation. This includes renewable and non-renewable natural resources, produced resources such as capital, and land and labour resources. Growth models have been widely used in business cycle theory and in asset pricing theory. They have also been applied to the optimal management of dynamic ecological systems that have an economic component as a part of a complex systems model.


Asset pricing model Bequest motive Business cycles Central limit theorem Computation Concavity Convergence Decentralization Dynamic macroeconomic theory Equity premium puzzle Equivalence theorem General equilibrium Indirect utility function Infinite horizons Law of large numbers Multisector growth models New Keynesian macroeconomics Optimal growth models Optimal planning models Overtaking ordering Rational expectations equilibrium Real business cycles Recursive intertemporal general equilibrium models Representative agent Separating hyperplane theorem Single-sector growth models Turnpike theorems 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Akdeniz, L., and W. Dechert. 2007. The equity premium in Brock’s asset pricing model. Journal of Economic Dynamics and Control 31: 2263–2292.CrossRefGoogle Scholar
  2. Altug, S., J. Chadha, and C. Nolan. 2003. Dynamic macroeconomic analysis: Theory and policy in general equilibrium. Cambridge: Cambridge University Press.Google Scholar
  3. Altug, S., and P. Labadie. 1994. Dynamic choice and asset markets. New York: Academic Press.Google Scholar
  4. Arkin, V., and I. Evstigneev. 1987. Stochastic models of control and economic dynamics. New York: Academic Press.Google Scholar
  5. Becker, R., and R. Boyd. 1997. Capital theory, equilibrium analysis and recursive utility. Oxford: Blackwell.Google Scholar
  6. Black, F. 1995. Exploring general equilibrium. Cambridge, MA: MIT Press.Google Scholar
  7. Brock, W.A., and M.J.P. Magill. 1979. Dynamics under uncertainty. Econometrica 47: 843–868.CrossRefGoogle Scholar
  8. Brock, W.A., and M. Majumdar. 1978. Global asymptotic stability results for multisector models of optimal growth under uncertainty when future utilities are discounted. Journal of Economic Theory 18: 225–243.CrossRefGoogle Scholar
  9. Brock, W.A., and L. Mirman. 1972. Optimal economic growth and uncertainty: the discounted case. Journal of Economic Theory 4: 479–513.CrossRefGoogle Scholar
  10. Cooley, T., ed. 1995. Frontiers of business cycle research. Princeton: Princeton University Press.Google Scholar
  11. Dechert, W., ed. 2001. Growth theory, nonlinear dynamics, and economic modelling: scientific essays of William Allen Brock. Cheltenham: Edward Elgar.Google Scholar
  12. Jog, V., and H. Schaller. 1994. Finance constraints and asset pricing: evidence on mean reversion. Journal of Empirical Finance 1: 193–209.CrossRefGoogle Scholar
  13. Majumdar, M. 1987. Multisector growth models. In The new palgrave: A dictionary of economics, ed. J. Eatwell, M. Milgate, and P. Newman. London: Macmillan.Google Scholar
  14. Majumdar, M., eds. 1992. Decentralization in infinite horizon economies. Boulder: Westview Press.Google Scholar
  15. Marimon, R. 1989. Stochastic turnpike property and stationary equilibrium. Journal of Economic Theory 47: 282–306.CrossRefGoogle Scholar
  16. McKenzie, L. 1986. Optimal economic growth, turnpike theorems, and comparative dynamics. In Handbook of mathematical economics, ed. K. Arrow and M. Intriligator, vol. 3. Amsterdam: North-Holland.Google Scholar
  17. McKenzie, L. 2002. Classical general equilibrium theory. Cambridge, MA: MIT Press.Google Scholar
  18. Sargent, T. 1987. Dynamic macroeconomic theory. Cambridge, MA: Harvard University Press.Google Scholar
  19. Stokey, N., and R. Lucas. 1989. Recursive methods in economic dynamics. Cambridge, MA: MIT Press.Google Scholar
  20. Turnovsky, S. 1995. Methods of macroeconomic dynamics. Cambridge, MA: MIT Press.Google Scholar
  21. Weitzman, M. 2004. The Bayesian equity premium. Working paper, Department of Economics, Harvard University.Google Scholar
  22. Woodford, M. 2003. Interest and prices. Princeton: Princeton University Press.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • W. A. Brock
    • 1
  • W. D. Dechert
    • 1
  1. 1.