Skip to main content

Markov Chain Monte Carlo Methods

  • Reference work entry
  • First Online:
The New Palgrave Dictionary of Economics
  • 423 Accesses

Abstract

MCMC methods, an important class of Monte Carlo methods, have played a major role in the growth of Bayesian statistics and econometrics. In an MCMC simulation, one samples a given distribution (say the posterior distribution in a Bayesian model) by simulating a suitably constructed Markov chain whose invariant distribution is the target distribution. The Metropolis–Hastings algorithm and its special case, the Gibbs sampler, are two common ways of devising an MCMC simulation. We discuss how these methods originate, discuss implementation issues and provide examples. The use of MCMC methods in Bayesian prediction and model choice problems is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 8,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Albert, J.H., and S. Chib. 1993. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88: 669–679.

    Article  Google Scholar 

  • Basu, S., and S. Chib. 2003. Marginal likelihood and Bayes factors for Dirichlet process mixture models. Journal of the American Statistical Association 98: 224–235.

    Article  Google Scholar 

  • Carlin, B.P., and S. Chib. 1995. Bayesian model choice via Markov chain Monte Carlo. Journal of the Royal Statistical Society, Series B 57: 473–484.

    Google Scholar 

  • Chan, K.S. 1993. Asymptotic behavior of the Gibbs sampler. Journal of the American Statistical Association 88: 320–326.

    Google Scholar 

  • Chen, M.H., Q.M. Shao, and J.G. Ibrahim. 2000. Monte Carlo methods in Bayesian computation. New York: Springer.

    Book  Google Scholar 

  • Chib, S. 1995. Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90: 1313–1321.

    Article  Google Scholar 

  • Chib, S. 2001. Markov chain Monte Carlo methods: Computation and inference. In Handbook of econometrics, ed. J.J. Heckman and E. Leamer, Vol. 5. Amsterdam: North-Holland.

    Google Scholar 

  • Chib, S., and E. Greenberg. 1994. Bayes inference in regression models with ARMA (p,q) errors. Journal of Econometrics 64: 183–206.

    Article  Google Scholar 

  • Chib, S., and E. Greenberg. 1995. Understanding the Metropolis–Hastings algorithm. American Statistician 49: 327–335.

    Google Scholar 

  • Chib, S., and I. Jeliazkov. 2001. Marginal likelihood from the Metropolis–Hastings output. Journal of the American Statistical Association 96: 270–281.

    Article  Google Scholar 

  • Dellaportas, P., J.J. Forster, and I. Ntzoufras. 2002. On Bayesian model and variable selection using MCMC. Statistics and Computing 12: 27–36.

    Article  Google Scholar 

  • Fahrmeir, L., and G. Tutz. 1994. Multivariate statistical modelling based on generalized linear models. Berlin: Springer.

    Book  Google Scholar 

  • Gelfand, A.E., and A.F. Smith. 1990. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85: 398–409.

    Article  Google Scholar 

  • Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions, PAMI 6: 721–741.

    Article  Google Scholar 

  • George, E.I., and R.E. McCulloch. 1993. Variable selection via Gibbs sampling. Journal of the American Statistical Association 88: 881–889.

    Article  Google Scholar 

  • Gilks, W.K., S. Richardson, and D.J. Spiegelhalter. 1996. Markov chain Monte Carlo in practice. London: Chapman & Hall.

    Google Scholar 

  • Godsill, S.J. 2001. On the relationship between Markov chain Monte Carlo methods for model uncertainty. Journal of Computational and Graphical Statistics 10: 230–248.

    Article  Google Scholar 

  • Green, P.J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711–732.

    Article  Google Scholar 

  • Hastings, W.K. 1970. Monte-Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109.

    Article  Google Scholar 

  • Jeffreys, H. 1961. Theory of Probability. 3rd edn. Oxford: Oxford University Press.

    Google Scholar 

  • Liu, J.S. 1994. The collapsed Gibbs sampler in Bayesian computations with applications to a gene-regulation problem. Journal of the American Statistical Association 89: 958–966.

    Article  Google Scholar 

  • Liu, J.S. 2001. Monte Carlo strategies in scientific computing. New York: Springer.

    Google Scholar 

  • Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, et al. 1953. Equations of state calculations by fast computing machines. Journal of Chemical Physics 21: 1087–1092.

    Article  Google Scholar 

  • Robert, C.P., and G. Casella. 2004. Monte Carlo statistical methods. 2nd edn. New York: Springer.

    Book  Google Scholar 

  • Roberts, G.O., and S.K. Sahu. 1997. Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. Journal of the Royal Statistical Society, Series B 59: 291–317.

    Article  Google Scholar 

  • Roberts, G.O., and A.F.M. Smith. 1994. Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications 49: 207–216.

    Article  Google Scholar 

  • Tanner, M.A., and W.H. Wong. 1987. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82: 528–550.

    Article  Google Scholar 

  • Tierney, L. 1994. Markov chains for exploring posterior distributions (with discussion). Annals of Statistics 21: 1701–1762.

    Article  Google Scholar 

  • Tierney, L., and A. Mira. 1999. Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine 18: 2507–2515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Copyright information

© 2018 Macmillan Publishers Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chib, S. (2018). Markov Chain Monte Carlo Methods. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95189-5_2042

Download citation

Publish with us

Policies and ethics