The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Determinacy and Indeterminacy of Equilibria

  • Chris Shannon
Reference work entry


This article discusses work on the determinacy and indeterminacy of equilibria in models of competitive markets. Determinacy typically refers to situations in which equilibria are finite in number, and local comparative statics can be precisely described. The article describes basic results on generic determinacy for exchange economies and the general underlying principles, together with various applications and extensions including incomplete financial markets and markets with infinitely many commodities.


Ambiguity aversion Arrow–Debreu model Comparative statics Concavity Continuous-time trading Continuum of equilibria Determinacy and indeterminacy of equilibria Edgeworth box economy Excess demand functions Existence of equilibrium Implicit function theorems Incomplete markets Infinite horizons Infinite-dimensional economies Lipschitz continuous functions Loss aversion Multiple equilibria Reference dependence Restricted participation Sard’s th Transversality th Uniqueness of equilibrium Walras’s Law 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Aliprantis, C., D.J. Brown, and O. Burkinshaw. 1987. Edgeworth equilibria. Econometrica 55: 1108–1138.CrossRefGoogle Scholar
  2. Anderson, R., and W.R. Zame. 2001. Genericity with infinitely many parameters. Advances in Theoretical Economics 1.Google Scholar
  3. Blume, L., and W.R. Zame. 1993. The algebraic geometry of competitive equilibrium. In Essays in general equilibrium and international trade: In memoriam trout rader, ed. W. Neuefeind. New York: Springer-Verlag.Google Scholar
  4. Cass, D., P. Siconolfi, and A. Villanacci. 2001. Generic regularity of competitive equilibrium with restricted participation on financial markets. Journal of Mathematical Economics 36: 61–76.CrossRefGoogle Scholar
  5. Debreu, G. 1970. Economies with a finite set of equilibria. Econometrica 38: 387–392.CrossRefGoogle Scholar
  6. Debreu, G. 1972. Smooth preferences. Econometrica 40: 603–615.CrossRefGoogle Scholar
  7. Dierker, E. 1972. Two remarks on the number of equilibria of an economy. Econometrica 40: 951–953.CrossRefGoogle Scholar
  8. Geanakoplos, J., and A. Mas-Colell. 1989. Real indeterminacy with financial assets. Journal of Economic Theory 47: 22–38.CrossRefGoogle Scholar
  9. Geanakoplos, J., and H. Polemarchakis. 1987. Existence, regularity and constrained suboptimality of competitive portfolio allocations when the asset market is incomplete. In Essays in honor of kenneth J arrow, vol 3, ed. W.P. Heller, R.M. Starr, and D.M. Starrett. Cambridge: Cambridge University Press.Google Scholar
  10. Gilboa, I., and D. Schmeidler. 1989. Maxmin expected utility with non-unique prior. Journal of Mathematical Economics 18: 141–153.CrossRefGoogle Scholar
  11. Hunt, B.R., T. Sauer, and J.A. Yorke. 1992. Prevalence: A translation invariant ‘almost every’ on infinite dimensional spaces. Bulletin (New Series) of the American Mathematical Society 27: 217–238.CrossRefGoogle Scholar
  12. Kahneman, D., and A. Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica 47: 263–291.CrossRefGoogle Scholar
  13. Kehoe, T., and D. Levine. 1985. Comparative statics and perfect foresight in infinite horizon economies. Econometrica 53: 433–452.CrossRefGoogle Scholar
  14. Koszegi, B., and M. Rabin. 2006. A model of reference-dependent preferences. Quarterly Journal of Economics 121: 1133–1165.CrossRefGoogle Scholar
  15. Mas-Colell, A. 1985. The theory of general economic equilibrium: A differentiable approach. Cambridge: Cambridge University Press.Google Scholar
  16. Mas-Colell, A. 1986. The price equilibrium existence problem in topological vector lattices. Econometrica 54: 1039–1054.CrossRefGoogle Scholar
  17. Minehart, D. 1997. A note on the generic finiteness of the set of equilibria in an exchange economy with constrained endowments. Mathematical Social Sciences 34: 75–80.CrossRefGoogle Scholar
  18. Pascoa, M.R., and S. Werlang. 1999. Determinacy of equilibrium in nonsmooth economies. Journal of Mathematical Economics 32: 289–302.CrossRefGoogle Scholar
  19. Rader, J.T. 1973. Nice demand functions. Econometrica 41: 913–935.CrossRefGoogle Scholar
  20. Rigotti, L., and C. Shannon. 2006. Sharing risk and ambiguity. Discussion paper. UC Berkeley.Google Scholar
  21. Sagi, J. 2006. Anchored preference relations. Journal of Economic Theory 130: 283–295.CrossRefGoogle Scholar
  22. Shannon, C. 1994. Regular nonsmooth equations. Journal of Mathematical Economics 23: 147–166.CrossRefGoogle Scholar
  23. Shannon, C. 1999. Determinacy of competitive equilibria in economies with many commodities. Economic Theory 14: 29–87.CrossRefGoogle Scholar
  24. Shannon, C. 2006. A prevalent transversality theorem for Lipschitz functions. Proceedings of American Mathematical Society 134: 2755–2765.CrossRefGoogle Scholar
  25. Shannon, C., and W.R. Zame. 2002. Quadratic concavity and determinacy of equilibrium. Econometrica 70: 631–662.CrossRefGoogle Scholar
  26. Tversky, A., and D. Kahneman. 1991. Loss aversion in riskless choice: A reference dependent model. Quarterly Journal of Economics 106: 1039–1061.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Chris Shannon
    • 1
  1. 1.