The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Markov Equilibria in Macroeconomics

  • Dirk Krueger
  • Felix Kubler
Reference work entry


We review the recent literature in macroeconomics that analyses Markov equilibria in dynamic general equilibrium model. After defining the Markov equilibrium concept we first summarize what is known about the existence and uniqueness of such equilibria in models where sequential equilibria can be obtained by solving a suitable social planner problem. We then discuss the existence problems of Markov equilibria in models where equivalence of equilibrium allocations and solutions to social planner problems cannot be established and review techniques the literature has developed to deal with the existence problem, as well as recent applications of these techniques in macroeconomics.


Backward induction Business cycles Commitment Convexity Dynamic programming Enforcement frictions Euler equations Existence of a Markov equilibrium Fixed-point theorems Functional equations Generalized Markov equilibria Informational frictions Lagrange multipliers Markov chains Markov equilibria in macroeconomics Markov processes Neoclassical growth theory Optimal taxation Overlapping generations models Policy functions Principle of optimality Recursive Markov equilibria Recursive techniques Reputation Sequential equilibria Social planner problem State spaces Transition functions 

JEL Classifications

D4 D10 
This is a preview of subscription content, log in to check access.


  1. Abreu, D., D. Pearce, and E. Stacchetti. 1990. Toward a theory of repeated games with discounting. Econometrica 58: 1041–1063.CrossRefGoogle Scholar
  2. Atkeson, A., and R. Lucas. 1992. On efficient distribution with private information. Review of Economic Studies 59: 427–453.CrossRefGoogle Scholar
  3. Bellman, R. 1957. Dynamic programming. Princeton: Princeton University Press.Google Scholar
  4. Blackwell, D. 1965. Discounted dynamic programming. Annals of Mathematical Statistics 36: 226–235.CrossRefGoogle Scholar
  5. Coleman, J. 1991. Equilibrium in a production economy with an income tax. Econometrica 59: 1091–1104.CrossRefGoogle Scholar
  6. Cooley, T. 1995. Frontiers of business cycle research. Princeton: Princeton University Press.Google Scholar
  7. Datta, M., L. Mirman, O. Morand, and K. Reffett. 2005. Markovian equilibrium in infinite horizon economies with incomplete markets and public policy. Journal of Mathematical Economics 41: 505–544.CrossRefGoogle Scholar
  8. Duffie, D., J. Geanakoplos, A. Mas-Colell, and A. McLennan. 1994. Stationary Markov equilibria. Econometrica 62: 745–781.CrossRefGoogle Scholar
  9. Heaton, H., and D. Lucas. 1996. Evaluating the effects of incomplete markets on risk sharing and asset pricing. Journal of Political Economy 104: 443–487.CrossRefGoogle Scholar
  10. Klein, P., and V. Rios-Rull. 2003. Time consistent optimal fiscal policy. International Economic Review 44: 1217–1246.CrossRefGoogle Scholar
  11. Krebs, T. 2004. Non-existence of recursive equilibria on compact state spaces when markets are incomplete. Journal of Economic Theory 115: 134–150.CrossRefGoogle Scholar
  12. Krebs, T. 2006. Recursive equilibrium in endogenous growth models with incomplete markets. Economic Theory 29: 505–523.CrossRefGoogle Scholar
  13. Krusell, P., and A. Smith. 1998. Income and wealth heterogeneity in the macroeconomy. Journal of Political Economy 106: 867–896.CrossRefGoogle Scholar
  14. Krusell, P., and A. Smith. 2003. Consumption–savings decisions with quasi–geometric discounting. Econometrica 71: 365–376.CrossRefGoogle Scholar
  15. Kubler, F., and H. Polemarchakis. 2004. Stationary Markov equilibria for overlapping generations. Economic Theory 24: 623–643.CrossRefGoogle Scholar
  16. Kubler, F., and K. Schmedders. 2002. Recursive equilibria in economies with incomplete markets. Macroeconomic Dynamics 6: 284–306.CrossRefGoogle Scholar
  17. Kubler, F., and K. Schmedders. 2003. Stationary equilibria in asset-pricing models with incomplete markets and collateral. Econometrica 71: 1767–1795.CrossRefGoogle Scholar
  18. Kydland, F., and E. Prescott. 1980. Dynamic optimal taxation, rational expectations and optimal control. Journal of Economic Dynamics and Control 2: 79–91.CrossRefGoogle Scholar
  19. Kydland, F., and E. Prescott. 1982. Time to build and aggregate fluctuations. Econometrica 50: 1345–1371.CrossRefGoogle Scholar
  20. Ljungqvist, L., and T. Sargent. 2000. Recursive macroeconomic theory. Cambridge, MA: MIT Press.Google Scholar
  21. Lucas, R. 1978. Asset prices in an exchange economy. Econometrica 46: 1426–1445.CrossRefGoogle Scholar
  22. Lucas, R., and E. Prescott. 1971. Investment under uncertainty. Econometrica 39: 659–681.CrossRefGoogle Scholar
  23. Marcet, A. and Marimon, R. 1998. Recursive contracts. Working paper, University Pompeu Fabra, Barcelona.Google Scholar
  24. Maskin, E., and J. Tirole. 2001. Markov perfect equilibrium. Journal of Economic Theory 100: 191–219.CrossRefGoogle Scholar
  25. Miao, J., and Santos, M. 2005. Existence and computation of Markov equilibria for dynamic non–optimal economies. Working paper, Department of Economics, Boston University.Google Scholar
  26. Phelan, C., and E. Stacchetti. 2001. Sequential equilibria in a Ramsey tax model. Econometrica 69: 1491–1518.CrossRefGoogle Scholar
  27. Rios-Rull, V. 1996. Life cycle economies with aggregate fluctuations. Review of Economic Studies 63: 465–490.CrossRefGoogle Scholar
  28. Santos, M. 2002. On non-existence of Markov equilibria for competitive-market economies. Journal of Economic Theory 105: 73–98.CrossRefGoogle Scholar
  29. Spear, S., and S. Srivastava. 1987. On repeated moral hazard with discounting. Review of Economic Studies 54: 599–617.CrossRefGoogle Scholar
  30. Stokey, N., R. Lucas, and E. Prescott. 1989. Recursive methods in economic dynamics. Cambridge, MA: Harvard University Press.Google Scholar
  31. Thomas, J., and T. Worrall. 1988. Self-enforcing wage contracts. Review of Economic Studies 55: 541–554.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Dirk Krueger
    • 1
  • Felix Kubler
    • 1
  1. 1.