The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Nash, John Forbes (Born 1928)

  • Joel Watson
Reference work entry


Nash originated general non-cooperative game theory in seminal articles in the early 1950s by formally distinguishing between non-cooperative and cooperative models and by developing the concept of equilibrium for non-cooperative games. Nash developed the first bargaining solution characterized by axioms, pioneered methods and criteria for relating cooperative-theory solution concepts and non-cooperative games, and also made fundamental contributions in mathematics. Nash was the 1994 recipient of the Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel, jointly with John C. Harsanyi and Reinhard Selten.


Coalitions Commitment Contract curve Cooperative games Cournot, A. A Dominance Equilibrium Equilibrium refinements Evolutionary stability Expected utility Fixed-point methods Game theory Maximin strategy Morgenstern, O Multiple equilibria Nash bargaining solution Nash demand game Nash equilibrium Nash program Nash. J. R., Jr Non-cooperative games Prisoner’s dilemma Rational behaviour Strategic and extensive-form games Strategic independence von Neumann, J 

JEL Classifications

This is a preview of subscription content, log in to check access.



The author thanks Vincent Crawford, Joel Sobel and Martin Dufwenberg for comments on a preliminary draft.


  1. Items indicated with an asterisk provide good further background reading on John F. Nash, Jr. Also, the Scandinavian Journal of Economics, vol. 97, issue 1 (1995), contains articles on John Nash and his co-Nobel Prize recipients, John C. Harsanyi and Reinhard Selten. For a complete list of Nash’s publications, including his papers in pure mathematics, see Milnor (1998).Google Scholar
  2. Bernheim, B.D. 1984. Rationalizable strategic behavior. Econometrica 52: 1007–1028.CrossRefGoogle Scholar
  3. Borel, E. 1921. La théorie du jeu et les équations intégrales à noyau symétrique gauche. Comptes Rendus de l’Académie des Sciences 173: 1304–1308. English translation by L.J. Savage, Econometrica 21: 97–100 (1953).Google Scholar
  4. Cournot, A. 1838. Recherches sur les Principes Mathématiques de la Théorie des Richesses. Paris: Hatchette. English translation by N.T. Bacon, Researches into the mathematical principles of the theory of wealth. New York: Macmillan, 1927.Google Scholar
  5. Crawford, V.P. 2002. John Nash and the analysis of strategic behavior. Economics Letters 75: 377–382.CrossRefGoogle Scholar
  6. Edgeworth, F.Y. 1881. Mathematical psychics. London: Kegan Paul.Google Scholar
  7. Hammerstein, P., et al. 1996. The work of John Nash in game theory: Nobel seminar, December 8, 1994. Journal of Economic Theory 69: 153–185.CrossRefGoogle Scholar
  8. Kalisch, C., J. Milnor, J. Nash, and E. Nering. 1954. Some experimental n-person games. In Decision processes, ed. R.M. Thrall, C.H. Coombs, and R.L. Davis. New York: Wiley.Google Scholar
  9. Mayberry, J.P., J.F. Nash, and M. Shubik. 1953. A comparison of treatments of a duopoly situation. Econometrica 21: 141–154.CrossRefGoogle Scholar
  10. Maynard Smith, J. 1984. Evolution and the theory of games. New York: Cambridge University Press.Google Scholar
  11. *Milnor, J. 1995. A Nobel Prize for John Nash. The Mathematical Intelligencer 17: 11–17.CrossRefGoogle Scholar
  12. *Milnor, J. 1998. John Nash and ‘a beautiful mind’. Notices of the American Mathematical Society 45: 1329–1332.Google Scholar
  13. Myerson, R.B. 1999. Nash equilibrium and the history of economic theory. Journal of Economic Literature 37: 1067–1082.CrossRefGoogle Scholar
  14. *Nasar, S. 1998. A beautiful mind. New York: Simon and Schuster.Google Scholar
  15. Nash Jr., J.F. 1950a. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, USA 36: 48–49.Google Scholar
  16. Nash Jr., J.F. 1950b. Non-cooperative games. Doctoral dissertation, Princeton University.Google Scholar
  17. Nash Jr., J.F. 1950c. The bargaining problem. Econometrica 18: 155–162.Google Scholar
  18. Nash Jr., J.F. 1951. Non-cooperative games. Annals of Mathematics 54: 286–295.CrossRefGoogle Scholar
  19. Nash Jr., J.F. 1953. Two-person cooperative games. Econometrica 21: 128–140.CrossRefGoogle Scholar
  20. *Nash Jr., J.F. 1995. Autobiography. In Les Prix Nobel. The Nobel Prizes 1994, ed. Frängsmyr, T. Stockholm: Nobel Foundation. Online. Available at Accessed 29 Nov 2006.
  21. Pearce, D. 1984. Rationalizable strategic behavior and the problem of perfection. Econometrica 52: 1029–1050.CrossRefGoogle Scholar
  22. von Neumann, J. 1928. Zur theories der gesellschaftsspiele. Mathematische Annalen 100: 295–320. English translation by S. Bergmann in Contributions to the theory of games IV, ed. R. D. Luce and A. W. Tucker. Princeton: Princeton University Press, 1959.Google Scholar
  23. von Neumann, J., and O. Morgenstern. 1944. Theory of games and economic behavior. Princeton: Princeton University Press (2nd ed. 1947).Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Joel Watson
    • 1
  1. 1.