The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Learning and Evolution in Games: An Overview

  • William H. Sandholm
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_1948

Abstract

We provide a taxonomy and brief overview of the theory of learning and evolution in games.

Keywords

Adaptive learning Belief learning Convergence Deterministic evolutionary dynamics Dirichlet distributions Evolutionarily stable strategies Evolutionary game theory Fictitious play Forward induction Learning and evolution in games Markov processes Mathematical biology Natural selection Purification Rational learning Regret Regret matching Repeated games Replicator dynamic Revision protocols Risk dominant equilibrium Stochastic evolutionary dynamics Subgame perfection 
This is a preview of subscription content, log in to check access

Bibliography

  1. Benaïm, M., and J.W. Weibull. 2003. Deterministic approximation of stochastic evolution in games. Econometrica 71: 873–903.CrossRefGoogle Scholar
  2. Binmore, K., L. Samuelson, and R. Vaughan. 1995. Musical chairs: Modeling noisy evolution. Games and Economic Behavior 11: 1–35.CrossRefGoogle Scholar
  3. Björnerstedt, J., and J.W. Weibull. 1996. Nash equilibrium and evolution by imitation. In The rational foundations of economic behavior, ed. K.J. Arrow, E. Colombatto, M. Perlman, and C. Schmidt. New York: St. Martin’s Press.Google Scholar
  4. Blume, L.E. 2003. How noise matters. Games and Economic Behavior 44: 251–271.CrossRefGoogle Scholar
  5. Börgers, T., and R. Sarin. 1997. Learning through reinforcement and the replicator dynamics. Journal of Economic Theory 77: 1–14.CrossRefGoogle Scholar
  6. Brown, G.W. 1951. Iterative solutions of games by fictitious play. In Activity analysis of production and allocation, ed. T.C. Koopmans. New York: Wiley.Google Scholar
  7. Brown, G.W., and J. von Neumann. 1950. Solutions of games by differential equations. In Contributions to the theory of games I, Annals of mathematics studies, vol. 24, ed. H.W. Kuhn and A.W. Tucker. Princeton: Princeton University Press.Google Scholar
  8. Ellison, G. 1993. Learning, local interaction, and coordination. Econometrica 61: 1047–1071.CrossRefGoogle Scholar
  9. Ellison, G. 2000. Basins of attraction, long run equilibria, and the speed of step-by-step evolution. Review of Economic Studies 67: 17–45.CrossRefGoogle Scholar
  10. Erev, I., and A.E. Roth. 1998. Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. American Economic Review 88: 848–881.Google Scholar
  11. Foster, D.P., and R. Vohra. 1997. Calibrated learning and correlated equilibrium. Games and Economic Behavior 21: 40–55.CrossRefGoogle Scholar
  12. Foster, D.P., and R. Vohra. 1998. Asymptotic calibration. Biometrika 85: 379–390.CrossRefGoogle Scholar
  13. Foster, D.P., and H.P. Young. 1990. Stochastic evolutionary game dynamics. Theoretical Population Biology 38: 219–232.CrossRefGoogle Scholar
  14. Foster, D.P., and H.P. Young. 2003. Learning, hypothesis testing, and Nash equilibrium. Games and Economic Behavior 45: 73–96.CrossRefGoogle Scholar
  15. Fudenberg, D., and D.M. Kreps. 1993. Learning mixed equilibria. Games and Economic Behavior 5: 320–367.CrossRefGoogle Scholar
  16. Fudenberg, D., and D.K. Levine. 1998. Theory of learning in games. Cambridge: MIT Press.Google Scholar
  17. Hart, S. 2002. Evolutionary dynamics and backward induction. Games and Economic Behavior 41: 227–264.CrossRefGoogle Scholar
  18. Hart, S., and A. Mas-Colell. 2000. A simple adaptive procedure leading to correlated equilibrium. Econometrica 68: 1127–1150.CrossRefGoogle Scholar
  19. Hart, S., and A. Mas-Colell. 2003. Uncoupled dynamics do not lead to Nash equilibrium. American Economic Review 93: 1830–1836.CrossRefGoogle Scholar
  20. Hofbauer, J. 2000. From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS. Selection 1: 81–88.CrossRefGoogle Scholar
  21. Hofbauer, J., and W.H. Sandholm. 2002. On the global convergence of stochastic fictitious play. Econometrica 70: 2265–2294.CrossRefGoogle Scholar
  22. Hofbauer, J., and W.H. Sandholm. 2006. Survival of dominated strategies under evolutionary dynamics. Working paper. University of Vienna and University of Wisconsin.Google Scholar
  23. Hofbauer, J., and K. Sigmund. 1988. Theory of evolution and dynamical systems. Cambridge: Cambridge University Press.Google Scholar
  24. Hofbauer, J., and J.M. Swinkels. 1996. A universal Shapley example. Working paper. University of Vienna and Northwestern University.Google Scholar
  25. Jordan, J.S. 1995. Bayesian learning in repeated games. Games and Economic Behavior 9: 8–20.CrossRefGoogle Scholar
  26. Kalai, E., and E. Lehrer. 1993. Rational learning leads to Nash equilibrium. Econometrica 61: 1019–1045.CrossRefGoogle Scholar
  27. Kandori, M., G.J. Mailath, and R. Rob. 1993. Learning, mutation, and long run equilibria in games. Econometrica 61: 29–56.CrossRefGoogle Scholar
  28. Kandori, M., and R. Rob. 1995. Evolution of equilibria in the long run: A general theory and applications. Journal of Economic Theory 65: 383–414.CrossRefGoogle Scholar
  29. Maynard Smith, J., and G.R. Price. 1973. The logic of animal conflict. Nature 246: 15–18.CrossRefGoogle Scholar
  30. Nachbar, J.H. 2005. Beliefs in repeated games. Econometrica 73: 459–480.CrossRefGoogle Scholar
  31. Nöldeke, G., and L. Samuelson. 1993. An evolutionary analysis of backward and forward induction. Games and Economic Behavior 5: 425–454.CrossRefGoogle Scholar
  32. Nyarko, Y. 1998. Bayesian learning and convergence to Nash equilibria without common priors. Economic Theory 11: 643–655.CrossRefGoogle Scholar
  33. Robinson, J. 1951. An iterative method of solving a game. Annals of Mathematics 54: 296–301.CrossRefGoogle Scholar
  34. Sandholm, W.H. 2006. Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium. Working paper. University of Wisconsin.Google Scholar
  35. Sandholm, W.H. 2007. Population games and evolutionary dynamics. Cambridge, MA: MIT Press.Google Scholar
  36. Schlag, K.H. 1998. Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. Journal of Economic Theory 78: 130–156.CrossRefGoogle Scholar
  37. Shapley, L.S. 1964. Some topics in two person games. In Advances in game theory, Annals of mathematics studies, vol. 52, ed. M. Dresher, L.S. Shapley, and A.W. Tucker. Princeton: Princeton University Press.Google Scholar
  38. Smith, M.J. 1984. The stability of a dynamic model of traffic assignment: An application of a method of Lyapunov. Transportation Science 18: 245–252.CrossRefGoogle Scholar
  39. Taylor, P.D., and L. Jonker. 1978. Evolutionarily stable strategies and game dynamics. Mathematical Biosciences 40: 145–156.CrossRefGoogle Scholar
  40. Young, H.P. 1993. The evolution of conventions. Econometrica 61: 57–84.CrossRefGoogle Scholar
  41. Young, H.P. 2004. Strategic learning and its limits. Oxford: Oxford University Press.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • William H. Sandholm
    • 1
  1. 1.