The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Spline Functions

  • Dale J. Poirier
Reference work entry


Spline functions are smooth piecewise functions that are popular tools in approximation theory and which arise naturally in economics.


Least squares Linear regression models Maximum likelihood estimation New Jersey Income-Maintenance Experiment Nonparametric regression Spline functions Structural change 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Craven, P., and G. Wahba. 1979. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of cross-validation. Numerische Mathematik 31: 377–403.CrossRefGoogle Scholar
  2. De Boor, C. 2001. A practical guide to splines. New York: Springer-Verlag.Google Scholar
  3. Denison, D., B. Mallick, and A. Smith. 1998. Automatic Bayesian curve fitting. Journal of the Royal Statistical Society: Series B 60: 333–350.CrossRefGoogle Scholar
  4. DiMatteo, I., C. Genovese, and R. Kass. 2001. Bayesian curve-fitting with free knot splines. Biometrika 88: 1055–1071.CrossRefGoogle Scholar
  5. Eubank, R. 1988. Spline smoothing and nonparametric regression. New York: Marcel Dekker.Google Scholar
  6. Friedman, J., and B. Silverman. 1989. Flexible parsimonious smoothing and additive modeling. Technometrics 31: 3–21.CrossRefGoogle Scholar
  7. Green, P., and B. Silverman. 1994. Nonparametric regression and generalized linear models. London: Chapman and Hall.CrossRefGoogle Scholar
  8. Halpern, E. 1973. Bayesian spline regression when the number of knots is unknown. Journal of the Royal Statistical Society: Series B 35: 347–360.Google Scholar
  9. Hansen, M., C. Kooperberg, and S. Sardy. 1998. Triogram models. Journal of the American Statistical Association 93: 101–119.CrossRefGoogle Scholar
  10. Kimeldorf, G., and G. Wahba. 1970. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics 41: 495–502.CrossRefGoogle Scholar
  11. Poirier, D. 1976. The econometrics of structural change with special emphasis on spline functions. Amsterdam: North-Holland.Google Scholar
  12. Schoenberg, I. 1946. Contributions to the problem of approximation of equidistant data by analytic functions: Parts I and II. Quarterly Journal of Applied Mathematics 4 (45–99): 112–141.CrossRefGoogle Scholar
  13. Schumaker, L. 1981. Spline functions: Basic theory. New York: Wiley.Google Scholar
  14. Silverman, B. 1985. Some aspects of the spline smoothing approach to nonparametric regression curve fitting (with discussion). Journal of the Royal Statistical Society: Series B 47: 1–52.Google Scholar
  15. Smith, M., and R. Kohn. 1996. Nonparametric regression using Bayesian variable selection. Journal of Econometrics 75: 317–343.CrossRefGoogle Scholar
  16. Smith, M., C. Wong, and R. Kohn. 1998. Additive nonparametric regression with autocorrelated errors. Journal of the Royal Statistical Society: Series B 60: 311–331.CrossRefGoogle Scholar
  17. Wahba, G. 1978. Improper priors, spline smoothing and the problem of guarding against model errors in regression. Journal of the Royal Statistical Society: Series B 40: 364–372.Google Scholar
  18. Wahba, G. 1983. Bayesian ‘confidence intervals’ for the cross-validated smoothing spline. Journal of the Royal Statistical Society: Series B 45: 133–150.Google Scholar
  19. Wahba, G. 1990. Spline models for observational data. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  20. Whittaker, E. 1923. On a new method of graduation. Proceedings of the Edinburgh Mathematical Society 41: 63–75.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Dale J. Poirier
    • 1
  1. 1.