Skip to main content

Least Squares

  • Reference work entry
  • First Online:
The New Palgrave Dictionary of Economics
  • 778 Accesses

Abstract

The method of least squares is a statistical technique used to determine the best linear or nonlinear regression line. The method, developed independently by Legendre (1805), Gauss (1806, 1809) and Adrain (1808), has a rich and lengthy history described in an excellent six-part article by Harter (1974–6). Least squares is the technique most widely used for fitting regression lines because of its computational simplicity and because of particular optimality properties described below. Primary among these are the facts that it gives the best linear unbiased estimator (BLUE) in the case of linear regression and that it gives the maximum likelihood estimator (MLE) in the case of regression with Gaussian (normal) errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 8,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Adrain, R. 1808. Research concerning the probabilities of errors which happen in making observations. Analyst 1: 93–109.

    Google Scholar 

  • Domowitz, I., and H. White. 1982. Misspecified models with dependent observations. Journal of Econometrics 20: 35–58.

    Article  Google Scholar 

  • Gallant, A.R., and H. White. 1987. A unified theory of estimation and inference for nonlinear dynamic models. Oxford: Basil Blackwell.

    Google Scholar 

  • Gauss, C.F. 1806. II Comet vom Jahr 1805. Monatliche Correspondenz zur Beförderung der Erd- und Himmelskunde 14: 181–186.

    Google Scholar 

  • Gauss, C.F. 1809. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium. Hamburg: F. Perthes and I.H. Besser.

    Google Scholar 

  • Hannan, E.J. 1971. Nonlinear time-series regression. Journal of Applied Probability 8: 767–780.

    Article  Google Scholar 

  • Harter, H.L. 1974–6. The method of least squares and some alternatives, Parts I–VI. International Statistical Review 42: 147–174, 235–264, 282; 43, 1–44, 125–190, 269–278; 44, 113–159.

    Google Scholar 

  • Jennrich, R. 1969. Asymptotic properties of nonlinear least squares estimators. Annals of Mathematical Statistics 40: 633–643.

    Article  Google Scholar 

  • Johnston, J. 1984. Econometric methods. New York: McGraw-Hill.

    Google Scholar 

  • Klimko, L., and P. Nelson. 1978. On conditional least squares estimation for stochastic processes. Annals of Statistics 6: 629–642.

    Article  Google Scholar 

  • Legendre, A.M. 1805. Nouvelles méthodes pour la determination des orbites des comètes. Paris: Courcier.

    Google Scholar 

  • Theil, H. 1971. Principles of econometrics. New York: Wiley & Sons.

    Google Scholar 

  • White, H. 1980a. Using least squares to approximate unknown regression functions. International Economic Review 21: 149–170.

    Article  Google Scholar 

  • White, H. 1980b. Nonlinear regression on cross-section data. Econometrica 48: 721–746.

    Article  Google Scholar 

  • White, H. 1980c. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817–838.

    Article  Google Scholar 

  • White, H. 1981. Consequences and detection of misspecified nonlinear regression models. Journal of the American Statistical Association 76: 419–433.

    Article  Google Scholar 

  • White, H. 1984. Asymptotic theory for econometricians. Orlando: Academic Press.

    Google Scholar 

  • White, H., and I. Domowitz. 1984. Nonlinear regression with dependent observations. Econometrica 52: 143–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Copyright information

© 2018 Macmillan Publishers Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

White, H. (2018). Least Squares. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95189-5_1015

Download citation

Publish with us

Policies and ethics