The New Palgrave Dictionary of Economics

Living Edition
| Editors: Palgrave Macmillan

Inequalities

  • Peter Newman
Living reference work entry
DOI: https://doi.org/10.1057/978-1-349-95121-5_880-1

Abstract

Mathematical inequalities are pervasive in economic theory, just as economic inequalities are pervasive in social life. The insistence that quantities (always) and prices (usually) be nonnegative, the constraint that expenditure not exceed wealth, the necessity in proving existence of competitive equilibrium that each agent’s resources have positive value, are so familiar that we scarcely think of them as requirements of inequality, though that is what they are.

This is a preview of subscription content, log in to check access

Bibliography

  1. Beckenbach, E.F., and R. Bellman. 1961. Inequalities. Berlin: Springer.CrossRefGoogle Scholar
  2. Hardy, G.H., J.E. Littlewood, and G. Polya. 1934. Inequalities, 2nd ed. Cambridge: Cambridge University Press, 1952.Google Scholar
  3. Hölder, O. 1889. Über einen Mittelwertsatz. Göttinger Nachrichten, 38–47.Google Scholar
  4. Jensen, J.L.W.V. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30: 175–193.CrossRefGoogle Scholar
  5. Mahler, K. 1939. Ein Übertragungsprinzip für konvexe Körper. Časopis Pêestováni Matematiky a Fysiky 63: 93–102.Google Scholar
  6. Rockafellar, R.T. 1970. Convex analysis. Princeton: Princeton University Press.CrossRefGoogle Scholar
  7. Young, L.C. 1969. Lectures on the calculus of variations and optimal control theory. Philadelphia: W.B. Saunders Company.Google Scholar

Copyright information

© The Author(s) 1987

Authors and Affiliations

  • Peter Newman
    • 1
  1. 1.