The New Palgrave Dictionary of Economics

Living Edition
| Editors: Palgrave Macmillan

Least Squares

  • Halbert White
Living reference work entry
DOI: https://doi.org/10.1057/978-1-349-95121-5_1015-1

Abstract

The method of least squares is a statistical technique used to determine the best linear or nonlinear regression line. The method, developed independently by Legendre (1805), Gauss (1806, 1809) and Adrain (1808), has a rich and lengthy history described in an excellent six-part article by Harter (1974–6). Least squares is the technique most widely used for fitting regression lines because of its computational simplicity and because of particular optimality properties described below. Primary among these are the facts that it gives the best linear unbiased estimator (BLUE) in the case of linear regression and that it gives the maximum likelihood estimator (MLE) in the case of regression with Gaussian (normal) errors.

This is a preview of subscription content, log in to check access

Bibliography

  1. Adrain, R. 1808. Research concerning the probabilities of errors which happen in making observations. Analyst 1: 93–109.Google Scholar
  2. Domowitz, I., and H. White. 1982. Misspecified models with dependent observations. Journal of Econometrics 20: 35–58.CrossRefGoogle Scholar
  3. Gallant, A.R., and H. White. 1987. A unified theory of estimation and inference for nonlinear dynamic models. Oxford: Basil Blackwell.Google Scholar
  4. Gauss, C.F. 1806. II Comet vom Jahr 1805. Monatliche Correspondenz zur Beförderung der Erd- und Himmelskunde 14: 181–186.Google Scholar
  5. Gauss, C.F. 1809. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium. Hamburg: F. Perthes and I.H. Besser.Google Scholar
  6. Hannan, E.J. 1971. Nonlinear time-series regression. Journal of Applied Probability 8: 767–780.CrossRefGoogle Scholar
  7. Harter, H.L. 1974–6. The method of least squares and some alternatives, Parts I–VI. International Statistical Review 42: 147–174, 235–264, 282; 43, 1–44, 125–190, 269–278; 44, 113–159.Google Scholar
  8. Jennrich, R. 1969. Asymptotic properties of nonlinear least squares estimators. Annals of Mathematical Statistics 40: 633–643.CrossRefGoogle Scholar
  9. Johnston, J. 1984. Econometric methods. New York: McGraw-Hill.Google Scholar
  10. Klimko, L., and P. Nelson. 1978. On conditional least squares estimation for stochastic processes. Annals of Statistics 6: 629–642.CrossRefGoogle Scholar
  11. Legendre, A.M. 1805. Nouvelles méthodes pour la determination des orbites des comètes. Paris: Courcier.Google Scholar
  12. Theil, H. 1971. Principles of econometrics. New York: Wiley & Sons.Google Scholar
  13. White, H. 1980a. Using least squares to approximate unknown regression functions. International Economic Review 21: 149–170.CrossRefGoogle Scholar
  14. White, H. 1980b. Nonlinear regression on cross-section data. Econometrica 48: 721–746.CrossRefGoogle Scholar
  15. White, H. 1980c. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817–838.CrossRefGoogle Scholar
  16. White, H. 1981. Consequences and detection of misspecified nonlinear regression models. Journal of the American Statistical Association 76: 419–433.CrossRefGoogle Scholar
  17. White, H. 1984. Asymptotic theory for econometricians. Orlando: Academic Press.Google Scholar
  18. White, H., and I. Domowitz. 1984. Nonlinear regression with dependent observations. Econometrica 52: 143–162.CrossRefGoogle Scholar

Copyright information

© The Author(s) 1987

Authors and Affiliations

  • Halbert White
    • 1
  1. 1.