The New Palgrave Dictionary of Economics

Living Edition
| Editors: Palgrave Macmillan


  • Jean-Marie Dufour
  • Cheng Hsiao
Living reference work entry

Latest version View entry history



The problem of identification is defined in terms of the possibility of characterizing parameters of interest from observable data. This problem occurs in many fields, such as automatic control, biomedical engineering, psychology, systems science, the design of experiments, and econometrics. This article focuses on identification in econometric models, which typically involve random variables. Identification in general parametric statistical models is defined, and its meaning in a number of specific econometric models is considered: regression (collinearity), simultaneous equations, dynamic models, and nonlinear models. Identification in nonparametric models, weak identification, and the statistical implications of identification failure are also discussed.


Bayes’ th Collinearity Endogeneity and exogeneity Identification Instrumental variable Linear models Multivariate regression models Nonparametric estimation Nonparametric models Probability Random variables Returns to schooling Separability Serial correlation Simultaneous equations models Treatment effect Weak identification Weak instruments 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Angrist, J.D., and A.B.. Krueger. 1991. Does compulsory school attendance affect schooling and earning? Quarterly Journal of Economics 106: 979–1014.Google Scholar
  2. Aström, K.J., and P. Eykhoff. 1971. System identification – A survey. Automatica 7: 123–162.CrossRefGoogle Scholar
  3. Bailey, R.A., F.H.L. Gilchrist, and H.D. Patterson. 1977. Identification of effects and confounding patterns in factorial designs. Biometrika 64: 347–354.CrossRefGoogle Scholar
  4. Bekker, P., and T. Wansbeek. 2001. Identification in parametric models. In Companion to theoretical econometrics, ed. B. Baltagi. Oxford: Blackwell.Google Scholar
  5. Benkard, C.L., and S. Berry. 2006. On the nonparametric identification of nonlinear simultaneous equations models: Comment on Brown (1983) and Roehrig (1988). Econometrica 74: 1429–1440.CrossRefGoogle Scholar
  6. Bound, J., D.A. Jaeger, and R.M. Baker. 1995. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical Association 90: 443–450.Google Scholar
  7. Brown, B.W. 1983. The identification problem in systems nonlinear in the variables. Econometrica 51: 175–196.CrossRefGoogle Scholar
  8. Buse, A. 1992. The bias of instrumental variables estimators. Econometrica 60: 173–180.CrossRefGoogle Scholar
  9. Deistler, M., and H.-G. Seifert. 1978. Identifiability and consistent estimability in econometric models. Econometrica 46: 969–980.CrossRefGoogle Scholar
  10. Drèze, J. 1975. Bayesian theory of identification in simultaneous equations models. In Studies in Bayesian econometrics and statistics, ed. S.E. Fienberg and A. Zellner. Amsterdam: North-Holland.Google Scholar
  11. Dufour, J.-M. 1997. Some impossibility theorems in econometrics, with applications to structural and dynamic models. Econometrica 65: 1365–1389.CrossRefGoogle Scholar
  12. Dufour, J.-M. 2003. Identification, weak instruments and statistical inference in econometrics. Canadian Journal of Economics 36: 767–808.CrossRefGoogle Scholar
  13. Fienberg, S.E., and A. Zellner, eds. 1975. Studies in Bayesian econometrics and statistics. Amsterdam: North-Holland.Google Scholar
  14. Fisher, F.M. 1976. The identification problem in econometrics. Huntington: Krieger.Google Scholar
  15. Frisch, R. 1934. Statistical confluence analysis by means of complete regression systems. Oslo: Universitetes Okonomiske Institutt.Google Scholar
  16. Gabrielson, A. 1978. Consistency and identifiability. Journal of Econometrics 8: 261–263.CrossRefGoogle Scholar
  17. Griliches, Z., and M.D. Intriligator, eds. 1983. Handbook of econometrics, vol. 1. Amsterdam: North-Holland.Google Scholar
  18. Haavelmo, T. 1944. The probability approach in econometrics. Econometrica 12 (Supp): 1–115.Google Scholar
  19. Hannan, E.J. 1971. The identification problem for multiple equation systems with moving average errors. Econometrica 39: 751–766.CrossRefGoogle Scholar
  20. Hatanaka, M. 1975. On the global identification of the dynamic simultaneous equations model with stationary disturbances. International Economic Review 16: 545–554.CrossRefGoogle Scholar
  21. Hausman, J.A., and W.E. Taylor. 1983. Identification, estimation and testing in simultaneous equations models with disturbance covariance restriction. Econometrica 51: 1527–1549.CrossRefGoogle Scholar
  22. Heckman, J., and R. Robb. 1985. Alternative methods for evaluating the impact of interventions. In Longitudinal analysis of labor market data, ed. J. Heckman and B. Singer. New York: Cambridge University Press.CrossRefGoogle Scholar
  23. Heckman, J.J., and E. Vytlacil. 1999. Local instrumental variables and latent variables models for identifying and bounding treatment effects. Proceedings of the National Academy of Sciences 96: 4730–4734.CrossRefGoogle Scholar
  24. Heckman, J.J., and E. Vytlacil. 2001. Local instrumental variables. In Nonlinear statistical modeling proceedings of the thirteenth international symposium in economic theory and econometrics: Essays in honor of Takeshi Amemiya, ed. C. Hsiao, K. Morimune, and J.L. Powell. Cambridge: Cambridge University Press.Google Scholar
  25. Hillier, G.H. 1990. On the normalization of structural equations: Properties of direction estimators. Econometrica 58: 1181–1194.CrossRefGoogle Scholar
  26. Hsiao, C. 1983. Identification. In Handbook of econometrics, ed. Z. Griliches and M.D. Intriligator, vol. 1. Amsterdam: North-Holland.Google Scholar
  27. Hurwicz, L. 1950. Generalization of the concept of identification. In Statistical inference in dynamic economic models, ed. T.C. Koopmans. New York: Wiley.Google Scholar
  28. Imbens, G., and J. Angrist. 1994. Identification and estimation of local average treatment effects. Econometrica 62: 467–476.CrossRefGoogle Scholar
  29. Kadane, J.B. 1975. The role of identification in Bayesian theory. In Studies in Bayesian econometrics and statistics, ed. S.E. Fienberg and A. Zellner. Amsterdam: North-Holland.Google Scholar
  30. Kempthorne, O. 1947. A simple approach to confounding and factorial replication in factorial experiments. Biometrika 34: 255–272.CrossRefGoogle Scholar
  31. Koopmans, T.C. 1950. Statistical inference in dynamic economic models. New York: Wiley.Google Scholar
  32. Koopmans, T.C., and O. Reiersøl. 1950. The identification of structural characteristics. Annals of Mathematical Statistics 21: 165–181.CrossRefGoogle Scholar
  33. Koopmans, T.C., H. Rubin, and R.B. Leipnik. 1950. Measuring the equation systems of dynamic economics. In Statistical inference in dynamic economic models, ed. T.C. Koopmans. New York: Wiley.Google Scholar
  34. Le Cam, L. 1956. On the asymptotic theory of estimation and testing hypotheses. In Proceedings of the third Berkeley Symposium on mathematical statistics and probability. Berkeley: University of California Press.Google Scholar
  35. Liu, T.C. 1960. Underidentification, structural estimation, and forecasting. Econometrica 28: 855–865.CrossRefGoogle Scholar
  36. Manski, C. 2003. Partial identification of probability distributions. New York: Springer.Google Scholar
  37. Marschak, J. 1942. Economic interdependence and statistical analysis. In Studies in mathematical economics and econometrics, ed. O. Lange, F. McIntyre, and T.O. Yntema. Chicago: University of Chicago Press.Google Scholar
  38. Mas-Collel, A. 1977. On the recoverability of consumers preferences from market demand behavior. Econometrica 45: 1409–1430.CrossRefGoogle Scholar
  39. Matzkin, R. 1994. Restrictions of economic theory in nonparametric methods. In Handbook of econometrics, ed. R.F. Engle and D.L. McFadden, vol. 4. Amsterdam: North-Holland.Google Scholar
  40. Matzkin, R. 2007. Nonparametric identification. In Handbook of econometrics, ed. J. Heckman and E. Leamer, vol. 6. Amsterdam: North-Holland.Google Scholar
  41. McManus, D.A. 1992. How common is identification in parametric models? Journal of Econometrics 53: 5–23.CrossRefGoogle Scholar
  42. Morgan, M.S. 1990. The history of econometric ideas. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. Nelson, C.R., and R. Startz. 1990. The distribution of the instrumental variable estimator and its t-ratio when the instrument is a poor one. Journal of Business 63: 125–140.CrossRefGoogle Scholar
  44. Phillips, P.C.B. 1983. Exact small sample theory in the simultaneous equations model. In Handbook of econometrics, ed. Z. Griliches and M.D. Intriligator, vol. 1. Amsterdam: North-Holland.Google Scholar
  45. Phillips, P.C.B. 1989. Partially identified econometric models. Econometric Theory 5: 181–240.CrossRefGoogle Scholar
  46. Prakasa Rao, B.L.S. 1992. Identifiability in stochastic models: Characterization of probability distributions. New York: Academic Press.Google Scholar
  47. Rao, C.R. 1962. Problems of selection with restriction. Journal of the Royal Statistical Society, Series B 24: 401–405.Google Scholar
  48. Rao, C.R. 1973. Linear statistical inference and its applications, 2nd ed. New York: Wiley. Google Scholar
  49. Roehrig, C.S. 1988. Conditions for identification in nonparametric and parametric models. Econometrica 56: 433–477.CrossRefGoogle Scholar
  50. Rosenbaum, P., and D. Rubin. 1985. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 79: 516–524.CrossRefGoogle Scholar
  51. Rothenberg, T.J. 1971. Identification in parametric models. Econometrica 39: 577–591.CrossRefGoogle Scholar
  52. Rothenberg, T.J. 1984. Approximating the distributions of econometric estimators and test statistics. In Handbook of econometrics, ed. Z. Griliches and M.D. Intriligator, vol. 2. Amsterdam: North-Holland.Google Scholar
  53. Sargan, J.D. 1983. Identification and lack of identification. Econometrica 51: 1605–1633.CrossRefGoogle Scholar
  54. Sims, C. 1980. Macroeconomics and reality. Econometrica 48: 1–48.CrossRefGoogle Scholar
  55. Staiger, D., and J.H. Stock. 1997. Instrumental variables regression with weak instruments. Econometrica 65: 557–586.CrossRefGoogle Scholar
  56. Stock, J.H., and F. Trebbi. 2003. Who invented IV regression? Journal of Economic Perspectives 17 (3): 177–194.CrossRefGoogle Scholar
  57. Stock, J.H., J.H. Wright, and M. Yogo. 2002. A survey of weak instruments and weak identification in generalized method of moments. Journal of Business and Economic Statistics 20: 518–529.CrossRefGoogle Scholar
  58. Wald, A. 1950. Note on the identification of economic relations. In Statistical inference in dynamic economic models, ed. T.C. Koopmans. New York: Wiley.Google Scholar
  59. Working, H. 1925. The statistical determination of demand curves. Quarterly Journal of Economics 39: 503–543.CrossRefGoogle Scholar
  60. Working, E.J. 1927. What do statistical demand curves show? Quarterly Journal of Economics 41: 212–235.CrossRefGoogle Scholar
  61. Wright, P.G. 1915. Moore’s economic cycles. Quarterly Journal of Economics 29: 631–641.CrossRefGoogle Scholar
  62. Wright, P.G. 1928. The tariff on animal and vegetable oils. New York: Macmillan.Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Jean-Marie Dufour
    • 1
  • Cheng Hsiao
    • 1
  1. 1.