Skip to main content

An Insight on Colon Cancer Stem Cells and Its Therapeutic Implications

  • Reference work entry
  • First Online:
Handbook of Oncobiology: From Basic to Clinical Sciences

Abstract

Colon cancer stem cells are a group of cells in a tumor that can reproduce themselves and change into different types of cells. They are thought to cause tumors to initiate, grow, and become resistant to treatment. Because of this, focusing on the stem cells of colon cancer has become an appealing way to develop new cancer treatments. In the past few years, a number of therapies that target colon cancer stem cells have been found. These therapies are thought to work by inhibiting various signaling pathways that are important for stem cells to self-renew. Reports say that some therapies target the Wnt/β-catenin pathway, which is often involved in the stem cells of people with colon cancer. Other therapies target the Notch signaling system, which is also a key part of stem cells’ ability to self-renew. Even with these advances, there is still a necessity for to develop new treatments that specifically target colon cancer stem cells. This insight talks about recent improvements of the molecular processes that give colon cancer stem cells their traits, as well as possible ways to treat these cells. It also talks about the current state of drug development in this area, including the development of small molecule inhibitors, monoclonal antibodies, and immunotherapies that target colon cancer stem cells. Further, it discusses some of the challenges and opportunities that exist in the development of effective drugs that can specifically target colon cancer stem cells, as well as the future directions of research in this area.

Consent for Publication: All authors have approved the final version of the manuscript and gave consent for publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aigner S, Sthoeger ZM, Fogel M et al (1997) CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood 89(9):3385–3395

    Article  CAS  PubMed  Google Scholar 

  • Akbari A, Ghahremani MH, Mobini GR et al (2015) Down-regulation of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I kinase inhibitor (SD-208). Iran J Basic Med Sci 18(9):856–861

    PubMed  PubMed Central  Google Scholar 

  • Amado NG, Predes D, Moreno MM et al (2014) Flavonoids and Wnt/β-catenin signaling: potential role in colorectal cancer therapies. Int J Mol Sci 15(7):12094–12106

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaji D, Kalarani IB, Mohammed V et al (2022) Potential role of human papillomavirus proteins associated with the development of cancer. Virus 33(3):322–333

    Article  CAS  Google Scholar 

  • Banerjee A, Deka D, Muralikumar M et al (2023) A concise review on miRNAs as regulators of colon cancer stem cells and associated signalling pathways. Clin Transl Oncol 1–12. https://doi.org/10.1007/s12094-023-03200-x

  • Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  • Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134

    Article  CAS  PubMed  Google Scholar 

  • Batsaikhan BE, Yoshikawa K, Kurita N et al (2014) Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Res 34(11):6339–6344. PMID: 25368233

    CAS  PubMed  Google Scholar 

  • Bhatt P, Khatri N, Kumar M et al (2015) Microbeads mediated oral plasmid DNA delivery using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug Deliv 22(6):849–861

    Article  CAS  PubMed  Google Scholar 

  • Brenner H, Kloor M, Pox CP (2014) Colorectal cancer. Lancet 383(9927):1490–1502

    Article  PubMed  Google Scholar 

  • Cai S, Kalisky T, Sahoo D et al (2017) A quiescent Bcl11b high stem cell population is required for maintenance of the mammary gland. Cell Stem Cell 20(2):247–260.e5

    Article  CAS  PubMed  Google Scholar 

  • Charafe-Jauffret E, Ginestier C, Iovino F et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Barsoumian HB, Fischer G et al (2020) Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. J Immunother Cancer 8(1):e000289

    Article  PubMed  PubMed Central  Google Scholar 

  • Crea F, Nobili S, Paolicchi E et al (2011) Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies. Drug Resist Updat 14(6):280–296

    Article  CAS  PubMed  Google Scholar 

  • Dalerba P, Clarke MF (2017) Cancer stem cells and personalized therapy: current status and future challenges. In: Montemurro F, Nabholtz JM (eds) Personalized treatment of breast cancer. Springer, Cham, pp 101–116

    Google Scholar 

  • Dalerba P, Dylla SJ, Park IK (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Deka D, Banerjee A et al (2022) A concise review on the role of natural and synthetically derived peptides in colorectal cancer. Curr Top Med Chem 22(31):2571–2588

    Article  CAS  PubMed  Google Scholar 

  • Dayan F, Mazure NM, Brahimi-Horn MC et al (2008) A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron 1(1):53–68

    Article  PubMed  PubMed Central  Google Scholar 

  • de Sousa e Melo F, Kurtova AV, Harnoss JM et al (2017) A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543(7647):676–680

    Article  PubMed  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  Google Scholar 

  • Dubey AK, Gupta U (2017) Personalized cancer therapy: recent progress and challenges. In: Sharma RK, Singh PR (eds) Personalized medicine. Springer, Singapore, pp 245–264

    Google Scholar 

  • Dylla SJ, Beviglia L, Park IK et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3(6):e2428

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi N, Afshinpour M, Fakhr SS et al (2023) Cancer stem cells in colorectal cancer: signaling pathways involved in stemness and therapy resistance. Crit Rev Oncol Hematol 182:103920

    Article  PubMed  Google Scholar 

  • Estrada-Meza C, Torres-Copado A, Loreti González-Melgoza L et al (2022) Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations. 3 Biotech 12(10):270

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang L, Zhu Q, Neuenschwander M et al (2016) A small-molecule antagonist of the β-Catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res 76(4):891–901

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Zhang L, Hu J (2013) Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles. Nanomedicine 9(2):174–184

    Article  CAS  PubMed  Google Scholar 

  • Girigoswami K, Girigoswami A (2021) A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. Endocr Metab Immune Disord Drug Targets 21(1):12–26

    Article  CAS  PubMed  Google Scholar 

  • Grosse-Gehling P, Fargeas CA, Dittfeld C et al (2013) CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 229(3):355–378

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi N, Utsunomiya T, Inoue H et al (2006) Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24(3):506–513

    Article  CAS  PubMed  Google Scholar 

  • Haribabu V, Sharmiladevi P, Akhtar N et al (2019) Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr Drug Deliv 16(3):233–241

    Article  CAS  PubMed  Google Scholar 

  • Huang EH, Hynes MJ, Zhang T et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69(8):3382–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahanafrooz Z, Mosafer J, Akbari M et al (2020) Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. J Cell Physiol 235(5):4153–4166

    Article  CAS  PubMed  Google Scholar 

  • Jaks V, Barker N, Kasper M et al (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299

    Article  CAS  PubMed  Google Scholar 

  • Jang YY, Sharkis SJ, Ablin RJ (2007) KLF4 expression in murine hematopoietic stem cells. Blood Cells Mol Dis 39(3):337–340

    Google Scholar 

  • Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56(2):106–130

    Article  PubMed  Google Scholar 

  • Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348(6230):74–80

    Article  CAS  PubMed  Google Scholar 

  • Kahlert C, Bergmann F, Beck J et al (2011) Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer. BMC Cancer 11:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemper K, Sprick MR, de Bree M et al (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70(2):719–729

    Article  CAS  PubMed  Google Scholar 

  • Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lao VV, Grady WM (2011) Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 8(12):686–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le PN, McDermott JD, Jimeno A (2014) Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther 146:1–11

    Article  PubMed  Google Scholar 

  • Leong SP, Nathanson SD, Zager JS (2022) Cancer metastasis through the lymphovascular system. Springer, Cham

    Book  Google Scholar 

  • Lin L, Liu Y, Li H et al (2011) Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer 105(2):212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looijenga LH, Stoop H, de Leeuw HP et al (2003) POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63(9):2244–2250

    CAS  PubMed  Google Scholar 

  • Lu W, Lin C, Roberts MJ et al (2011) Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway. PLoS One 6(12):e29290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma YS, Li W, Liu Y et al (2020) Targeting colorectal cancer stem cells as an effective treatment for colorectal cancer. Technol Cancer Res Treat 19:1533033819892261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlos-Suárez A, Barriga FM, Jung P et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524

    Article  PubMed  Google Scholar 

  • Nusse R, Clevers H (2017) Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell 169(6):985–999

    Article  CAS  PubMed  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    Article  PubMed  Google Scholar 

  • Okugawa Y, Grady WM, Goel A (2015) Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 149(5):1204–1225.e12

    Article  CAS  PubMed  Google Scholar 

  • Orian-Rousseau V, Ponta H (2015) Perspectives of CD44 targeting therapies. Arch Toxicol 89(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Oving IM, Clevers HC (2002) Molecular causes of colon cancer. Eur J Clin Invest 32(6):448–457

    Article  CAS  PubMed  Google Scholar 

  • Palaniappan A, Ramar K, Ramalingam S (2016) Computational identification of novel stage-specific biomarkers in colorectal cancer progression. PLoS One 11(5):e0156665

    Article  PubMed  PubMed Central  Google Scholar 

  • Pesce M, Schöler HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19(4):271–278

    Article  CAS  PubMed  Google Scholar 

  • Pevny LH, Lovell-Badge R (1997) Sox genes find their feet. Curr Opin Genet Dev 7(3):338–344

    Article  CAS  PubMed  Google Scholar 

  • Prakash JS, Rajamanickam K (2015) Aptamers and their significant role in cancer therapy and diagnosis. Biomedicines 3(3):248–269

    Article  CAS  PubMed  Google Scholar 

  • Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767

    Article  CAS  PubMed  Google Scholar 

  • Rajasekhar VK, Vemuri MC (2009) Regulatory networks in stem cells. Humana Press, Totowa

    Book  Google Scholar 

  • Rathva B, Desai SV (2020) Colorectal cancer: etiology, pathogenesis, and current treatment. J Innov Pharm Biol Sci 7(4):20–24

    CAS  Google Scholar 

  • Ricci-Vitiani L, Fabrizi E, Palio E et al (2009) Colon cancer stem cells. J Mol Med (Berl) 87(11):1097–1104

    Article  PubMed  Google Scholar 

  • Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12(1):15–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scatena R, Mordente A, Giardina B (2011) Advances in cancer stem cell biology. Springer Science & Business Media, New York

    Google Scholar 

  • Shang S, Hua F, Hu ZW (2017) The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8(20):33972–33989

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherlock P, Lipkin M, Winawer SJ (1980) The prevention of colon cancer. Am J Med 68(6):917–931

    Article  CAS  PubMed  Google Scholar 

  • Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest 118(6):2111–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szaryńska M, Olejniczak A, Kobiela J et al (2017) Therapeutic strategies against cancer stem cells in human colorectal cancer. Oncol Lett 14(6):7653–7668

    PubMed  PubMed Central  Google Scholar 

  • Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402

    Article  CAS  PubMed  Google Scholar 

  • Todaro M, Francipane MG, Medema JP et al (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138(6):2151–2162

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24(2):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen L, Todaro M, de Sousa Mello F et al (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 105(36):13427–13432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen L, De Sousa E, Melo F et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Scadden DT (2015) Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep 16(9):1084–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zuo X, Xie K et al (2018) The role of CD44 and cancer stem cells. Methods Mol Biol 1692:31–42

    Article  CAS  PubMed  Google Scholar 

  • Winter MJ, Nagtegaal ID, van Krieken JH et al (2003) The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am J Pathol 163(6):2139–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Zhang Y, Zhang X et al (2020) Gene therapy targeting cancer stem cells in colorectal cancer. Curr Stem Cell Res Ther 15(4):301–307

    Google Scholar 

  • Yanamoto S, Kawasaki G, Yamada S et al (2011) Isolation and characterization of cancer stem-like side population cells in human oral cancer cells. Oral Oncol 47(9):855–860

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Shi P, Zhao G et al (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Yauch RL, Gould SE, Scales SJ et al (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455(7211):406–410

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Balch C, Chan MW et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antara Banerjee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gopan S, P. et al. (2024). An Insight on Colon Cancer Stem Cells and Its Therapeutic Implications. In: Sobti, R.C., Ganguly, N.K., Kumar, R. (eds) Handbook of Oncobiology: From Basic to Clinical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-6263-1_63

Download citation

Publish with us

Policies and ethics