Skip to main content

Machine Learning Techniques in Computer-Aided Diagnosis for Effective Detection of Malignant Tissues

  • Reference work entry
  • First Online:
Handbook of Oncobiology: From Basic to Clinical Sciences
  • 102 Accesses

Abstract

Cancer is the most general term collectively used for a variety of diseases that can affect any part of the body. Malignant tumors and neoplasms are other words that are used for cancer. Cancer is the quick development of aberrant cells that proliferate outside of their normal borders and have the potential to move to other organs and infiltrate nearby bodily parts and is the leading cause of death worldwide. Medical experts may use computer-aided Diagnosis (CAD) as a second opinion and to save their valuable time from manual analysis. Practitioners use various modalities such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). X-ray images are helpful in early diagnosis, but for effective diagnosis and to pinpoint the malignant issues, MRI and CT images are preferred. Even though MR images are fine-grained and detailed images of organs, during the acquisition process some rician and Gaussian noise may creep up. It is necessary for a diagnostic system to denoise the images before segmentation and classification to attain better accuracy for the models. This chapter aims to provide insights into the machine learning algorithms used by various CAD systems which aim to detect and segment various types of cancers such as prostate, cervix, pancreas, colon, and kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham B, Nair MS (2018) Computer-aided diagnosis of clinically significant prostate cancer from MRI images using sparse autoencoder and random forest classifier. Biocybernetics Biomed Eng 38(3):733–744

    Article  Google Scholar 

  • Alexander D, Zikic D, Zhang J et al (2014) Image quality transfer via random forest regression: applications in diffusion MRI. In: Medical image computing and computer-assisted intervention, MICCAI, pp 225–232

    Google Scholar 

  • Appel R, Fuchs T, Dollr P, Perona P (2013) Quickly boosting decision trees pruning underachieving features early. In: International conference on machine learning, ICML, vol 28, pp 594–602

    Google Scholar 

  • Asria H, Mousannif H, Al Moatassime H, Noel T (2016) Using machine learning algorithms for breast cancer risk prediction and diagnosis. https://doi.org/10.1016/j.procs.2016.04.224

  • Cancer. (n.d.). https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 9 Oct 2022

  • Chen P-J, Lin M-C, Lai M-J, Lin J-C, Lu HH-S, Tseng VS (2018) Accurate classification of diminutive colorectal polyps using computer-aided analysis. https://doi.org/10.1053/j.gastro.2017.10.010

  • Chittora P, Chaurasia S et al (2021) Prediction of chronic kidney disease – a machine learning perspective digital object identifier. https://doi.org/10.1109/ACCESS.2021.3053763

  • Clark T, Zhang J, Baig S, Wong A, Haider MA, Khalvati F (2017) Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks. J Med Imaging 4(4):041307

    Article  Google Scholar 

  • Colucci PM, Yale SH, Rall CJ (2003) Colorectal polyps. Clin Med Res 1(3):261–262. https://doi.org/10.3121/cmr.1.3.261

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuingnet R, Prevost R, Lesage D, Cohen LD, Mory B, Ardon R (2012) Automatic detection and segmentation of kidneys in 3D CT images using random forests. https://doi.org/10.1007/978-3-642-33454-2_9

  • Dalila F, Zohra A, Reda K, Hocine C (2017) Segmentation and classification of melanoma and benign skin lesions. https://doi.org/10.1016/j.ijleo.2017.04.084

  • Doyle S, Madabhushi A, Feldman M, Tomaszeweski J (2006) A boosting cascade for automated detection of prostate cancer from digitized histology. Med Image Comput Comput Assist Interv 9(Pt 2):504–511

    PubMed  Google Scholar 

  • Farag A, Lu L, Turkbey E, Liu J, Summers RM (2014) A bottom-up approach for automatic pancreas segmentation in abdominal CT scans. https://doi.org/10.1007/978-3-319-13692-9_10

  • Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA, Sala E, Hricak H, Deasy JO (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci 112(46):E6265–E6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffney DK, Hashibe M, Kepka D, Maurer KA, Werner TL (2018) Too many women are dying from cervix cancer: problems and solutions. https://doi.org/10.1016/j.ygyno.2018.10.004

  • Ghosh P et al (2020) Optimization of prediction method of chronic kidney disease using machine learning algorithm. In: 2020 15th international joint symposium on artificial intelligence and natural language processing (iSAI-NLP). IEEE

    Google Scholar 

  • Guo Y, Ruan S, Walker P, Feng Y (2014) Prostate cancer segmentation from multiparametric MRI based on a fuzzy Bayesian model. In: In2014 IEEE 11th international symposium on biomedical imaging (ISBI) 2014 April 29. IEEE, pp 866–869

    Google Scholar 

  • Gupta P, Garg S (2020) Breast cancer prediction using varying parameters of machine learning models. https://doi.org/10.1016/j.procs.2020.04.064

    Book  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J et al (2009) The elements of statistical learning, vol 2

    Book  Google Scholar 

  • Hou X, Xie C, Li F, Wang J, Lv C, Xie G, Nan Y (2020) Ping an healthcare technology, ShangHai, China A triple-stage self-guided network for kidney tumor segmentation. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI) April 3–7, Iowa City. https://doi.org/10.1109/ISBI45749.2020.9098609

  • Huang X, Wang W, Xue Z, Antani S, Long LR, Jeronimo J (2008) Tissue classification using cluster features for lesion detection in digital cervigrams. In: Medical imaging 2008: image processing, vol 6914. International Society for Optics and Photonics, p 69141Z

    Chapter  Google Scholar 

  • Juneja M, Saini SK, Gupta J, Garg P, Thakur N, Sharma A, Mehta M, Jindal P (2021) Survey of denoising, segmentation and classification of magnetic resonance imaging for prostate cancer. https://doi.org/10.1007/s11042-021-11044-2

  • Khalifa F, Soliman A, Dwyer AC, Gimel’farb G, El-Baz A (2016) A random forest-based framework for 3d kidney segmentation from dynamic contrast-enhanced CT images. In: 2016 IEEE international conference on image processing (ICIP). https://doi.org/10.1109/ICIP.2016.7532990

    Chapter  Google Scholar 

  • Khourdifi Y, Bahaj M (2018) Applying best machine learning algorithms for breast cancer prediction and classification. 978-1-5386-4225-2/18/$31.00 ©2018. IEEE

    Book  Google Scholar 

  • Kominami Y, Yoshida S, Tanaka S, Sanomura Y, Hirakawa T, Raytchev B, Tamaki T, Koide T, Kaneda K, Chayama K (2016) Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc 83:643–649

    Article  PubMed  Google Scholar 

  • Larose DT (2004) Discovering knowledge in data. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  • Lehaire J, Flamary R, Rouvière O, Lartizien C (2014) Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification. In: 2014 IEEE international conference on image processing (ICIP), 2014 October 27. IEEE, pp 2251–2255

    Google Scholar 

  • Li Y, Zhang S, Zeng X (2009) Research of multi-population agent genetic algorithm for feature selection. Expert Syst Appl 36(9):11570–11581

    Article  Google Scholar 

  • Li J, Weng Z, Xu H, Zhang Z, Miao H, Chen W, Liu Z, Zhang X, Wang M, Xu X, Ye Q (2018a) Support vector machines (SVM) classification of prostate cancer Gleason score in central gland using multiparametric magnetic resonance images: a cross-validated study. Eur J Radiol 98:61–67

    Article  PubMed  Google Scholar 

  • Li S, Jianga H, Wang Z, Zhang G, Yao Y-d (2018b) An effective computer aided diagnosis model for pancreas cancer on PET/CT images. Comput Methods Prog Biomed 165:205–214

    Article  Google Scholar 

  • Li S, Jiang H, Wang Z, Zhang G, Yao Y-D (2018c) An effective computer aided diagnosis model for pancreas cancer on PET/CT images. Comput Methods Prog Biomed 165:205–214

    Article  Google Scholar 

  • Liang M, Zheng G, Huang X, Milledge G, Tokuta A (2013) Identification of abnormal cervical regions from colposcopy image sequences. In: 21st international conference on computer graphics, visualization and computer vision, pp 130–136

    Google Scholar 

  • Liu P, Wang S, Turkbey B, Grant K, Pinto P, Choyke P, Wood BJ, Summers RM (2013) A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels. In: Medical imaging 2013: computer-aided diagnosis, vol 8670. International Society for Optics and Photonics, p 86701G

    Chapter  Google Scholar 

  • Mahdianpari M, Salehi B, Rezaee M, Mohammadimanesh F, Zhang Y (2018) Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens 10(7):1119

    Article  Google Scholar 

  • Mahmut K, Bilge HÅž (2014) Classification of pancreas tumor dataset using adaptive weighted k nearest neighbor algorithm. IEEE

    Google Scholar 

  • Min LI, Xiaohan NIE, Reheman Y, Huang P, Zhang S, Yuan Y, Chen C, Yan Z, Chen C, Han XLVW (2020) Computer-aided diagnosis and staging of pancreatic cancer based on CT images digital object identifier. https://doi.org/10.1109/ACCESS.2020.3012967

    Book  Google Scholar 

  • Mosquera-Lopez C, Velez-Hoyos A, Thompson I (2015) Computer-aided prostate cancer diagnosis from digitized histopathology: a review on texture-based systems. IEEE Rev Biomed Eng. https://doi.org/10.1109/RBME.2014.2340401

  • Muhuri SA, Bhattacharjee MO (2014) Automated identification and analysis of cervical cancer. In: 3rd world conference on applied sciences, engineering & technology, pp 516–520

    Google Scholar 

  • Murugan A, Anu S, Nair H, Kumar KPS (2019) Detection of skin cancer using SVM, random forest and kNN classifiers. https://doi.org/10.1007/s10916-019-1400-8

  • Murugan A, Anu S, Nair H, Preethi AAP, Kumar KPS (2021) Diagnosis of skin cancer using machine learning techniques. https://doi.org/10.1016/j.micpro.2020.103727

  • Naji MA, El Filali S, Aarika K, Benlahmar ELH, Abdelouhahid RA, Debauche O (2021) Machine learning algorithms for breast cancer prediction and diagnosis. https://doi.org/10.1016/j.procs.2021.07.062

  • Noble WS (2006) What is a support vector machine? Nat Biotechnol 24(12):1565–1567. https://doi.org/10.1038/nbt1206-1565

    Article  CAS  PubMed  Google Scholar 

  • Osareh A, Mirmehdi M et al (2002) Comparative exudate classification using support vector machines and neural networks. In: Medical image computing and computer-assisted intervention, MICCAI, pp 413–420

    Google Scholar 

  • Ozer S, Langer DL, Liu X, Haider MA, Van der Kwast TH, Evans AJ, Yang Y, Wernick MN, Yetik IS (2010) Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. Med Phys 37(4):1873–1883

    Article  PubMed  Google Scholar 

  • Pancreatic Cancer. (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396775/. Accessed 12 Oct 2022

  • Parfait S, Walker PM, Créhange G, Tizon X, Miteran J (2012) Classification of prostate magnetic resonance spectra using support vector machine. Biomed Signal Process Control 7:499–508

    Article  Google Scholar 

  • Quinlan JR (2014) C4.5: Programs for machine learning: 302. https://books.google.com/books?hl=fr&lr=&id=b3ujBQAAQBAJ&pgis=1. Accessed 5 Jan 2016

  • Rish I (2001) An empirical study of the naive Bayes classifier. IJCAI Work Empir Methods Artif Intell 3:41–46

    Google Scholar 

  • Rundo L, Militello C, Russo G, Garufi A, Vitabile S, Gilardi MC, Mauri G (2017 Jun) Automated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imaging. Information 8(2):49

    Article  Google Scholar 

  • Saini SK, Bansal V, Kaur R, Juneja M (2020) ColpoNet for automated cervical cancer screening using colposcopy images. Mach Vis Appl 31(3):1–15

    Article  Google Scholar 

  • Sánchez-Gonzáleza A, García-Zapiraina B, Sierra-Sosab D, Elmaghraby A (2018) Automatized colon polyp segmentation via contour region analysis. Comput Biol Med 100:152–164

    Article  Google Scholar 

  • Song D, Kim E, Huang X et al (2015) Multi-modal entity coreference for cervical dysplasia diagnosis. IEEE Trans Med Imaging, TMI 34(1):229–245

    Article  Google Scholar 

  • Sudharson S, Kokil P (2021) Computer-aided diagnosis system for the classification of multi-class kidney abnormalities in the noisy ultrasound images. https://doi.org/10.1016/j.cmpb.2021.106071

  • Trigui R, Mitéran J, Walker PM, Sellami L, Hamida AB (2017) Automatic classification and localization of prostate cancer using multi-parametric MRI/MRS. Biomed Signal Process Control 31:189–198

    Article  Google Scholar 

  • Tu Z et al (2006) Probabilistic 3D polyp detection in CT images: the role of sample alignment. In: Computer vision and pattern recognition, 2006 IEEE computer society conference on, vol 2. IEEE

    Google Scholar 

  • Tulpule B, Yang S, Srinivasan Y, Mitra S, Nutter B (2005) Segmentation and classification of cervix lesions by pattern and texture analysis. In: The 14th IEEE international conference on fuzzy systems, 2005. FUZZ’05. IEEE, pp 173–176

    Chapter  Google Scholar 

  • Xu T, Zhang H, Xin C, Kim E, Long LR, Xue Z, Antani S, Huang X (2017) Multi-feature based benchmark for cervical dysplasia classification evaluation. Pattern Recogn 1(63):468–475

    Article  Google Scholar 

  • Yua Y, Mab J, Zhaob W, Lic Z, Ding S (2020) MSCI: a multistate dataset for colposcopy image classification of cervical cancer screening. https://doi.org/10.1016/j.ijmedinf.2020.104352

  • Zhang J, Liu Y (2004) Cervical cancer detection using SVM based feature screening

    Google Scholar 

  • Zhang R, Zheng Y, Mak TWC, Yu R, Wong SH, Lau JYW, Poon CCY (2017) Automatic detection and classification of colorectal polyps by transferring low-level CNN features from non-medical domain. https://doi.org/10.1109/JBHI.2016.2635662

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Aggarwal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Juneja, M., Saini, S.K., Kaur, H., Aggarwal, N. (2024). Machine Learning Techniques in Computer-Aided Diagnosis for Effective Detection of Malignant Tissues. In: Sobti, R.C., Ganguly, N.K., Kumar, R. (eds) Handbook of Oncobiology: From Basic to Clinical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-6263-1_34

Download citation

Publish with us

Policies and ethics