Skip to main content

Structuring Inflammasome-Epigenome: Phenotypic Axis in Gynecological Cancers

  • Reference work entry
  • First Online:
Handbook of Oncobiology: From Basic to Clinical Sciences

Abstract

Inflammasomes are made up of sensor proteins, caspase domain having adaptor protein, and caspase-1 aka pro-inflammatory caspase present in the cytoplasmic membrane of the cell. They get activated in the presence of pathogen infection or a stress condition leading to the stimulation of IL-1β and IL-18, i.e., pro-inflammatory cytokines. These inflammasomes are activated through sensing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), involving a variety of immune system disorders. The interaction between the immune system and cancer recognized the importance of inflammasomes in various disorders of cancer. Out of all the inflammasomes, NLRP3 is the most important one and is commonly associated with tumorigenesis and involved in tumor progression. To control inflammasomes, epigenetic regulation and autophagic modulation are done. Epigenetic regulation occurs through post-translational modification via methylation, modification of histone, and also, expression of noncoding RNA. The upregulation and downstream of inflammasomes determine the development of pathologies with a different outcome. Additionally, autophagy modulation known as homeostasis controller act on inflammasomes-mediated tumor and try to maintain homeostasis condition in them to remove risk factor involved in cancer development. As NLRP3 inflammasomes play a variety of roles in tumorigenesis, they can be deployed as a potential anticancer drug target. The main focus of this review will be to summarize the role of inflammasomes in cancer through the expression of cytokines IL-1β and IL-18 and the effect of epigenetic and autophagic modulation on controlling inflammasomes. There is a need for further research on inflammasome significance in the cancer domain as the results are contrasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Allen IC et al (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Li S (2020) Long noncoding RNA OIP5-AS1 aggravates cell proliferation, migration in gastric cancer by epigenetically silencing NLRP6 expression via binding EZH2. J Cell Biochem 121:353–362

    Article  CAS  PubMed  Google Scholar 

  • Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  CAS  PubMed  Google Scholar 

  • Berek JS, Kehoe ST, Kumar L, Friedlander M (2018) Cancer of the ovary, fallopian tube, and peritoneum. Int J Gynecol Obstet 143:59–78

    Article  Google Scholar 

  • Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  CAS  PubMed  Google Scholar 

  • Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244

    Article  CAS  PubMed  Google Scholar 

  • Chang CM et al (2018) Integrating the dysregulated inflammasome-based molecular functionome in the malignant transformation of endometriosisassociated ovarian carcinoma. Oncotarget 9:3704–3726

    Article  PubMed  Google Scholar 

  • Chen J, Chen ZJ (2018) PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564:71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IF et al (2006) AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol Cancer Ther 5:1–7

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Shanmugam NKN, Pazos MA, Hurley BP, Cherayil BJ (2016) Commensal bacteria-induced inflammasome activation in mouse and human macrophages is dependent on potassium efflux but does not require phagocytosis or bacterial viability. PLoS One 11:1–20

    Google Scholar 

  • Chen IY, Moriyama M, Chang MF, Ichinohe T (2019) Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 10:1–9

    Google Scholar 

  • Deswaerte V et al (2018) Inflammasome adaptor ASC suppresses apoptosis of gastric cancer cells by an IL18-mediated inflammation-independent mechanism. Cancer Res 78:1293–1307

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  • Ershaid N et al (2019) NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun 10:4375

    Article  PubMed  PubMed Central  Google Scholar 

  • Eyre R et al (2019) Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat Commun 10:1–15

    Article  CAS  Google Scholar 

  • Faustin B et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    Article  CAS  PubMed  Google Scholar 

  • Ghiringhelli F et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1Β-dependent adaptive immunity against tumors. Nat Med 15:1170–1178

    Article  CAS  PubMed  Google Scholar 

  • Gonda TA, Tu S, Wang TC (2009) Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 8:2005–2013

    Article  CAS  PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarda G et al (2011) Differential expression of NLRP3 among hematopoietic cells. J Immunol 186:2529–2534

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Callaway JB, Ting JPY (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo B, Fu S, Zhang J, Liu B, Li Z (2016) Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 6:1–12

    Google Scholar 

  • Hamarsheh S, Zeiser R (2020) NLRP3 inflammasome activation in cancer: a double-edged sword. Front Immunol 11:1–11

    Article  Google Scholar 

  • Hara H et al (2018) The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell 175:1651–1664.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward JA, Mathur A, Ngo C, Man SM (2018) Cytosolic recognition of microbes and pathogens: inflammasomes in action. Microbiol Mol Biol Rev 82:1–40

    Article  Google Scholar 

  • He A et al (2017) CD200Fc reduces LPS-induced IL-1β activation in human cervical cancer cells by modulating TLR4-NF-κB and NLRP3 inflammasome pathway. Oncotarget 8:33214–33224

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichinohe T, Pang IK, Iwasaki A (2010) Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11:404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Yanagi Y, Ichinohe T (2012) Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLoS Pathog 8:e1002857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  • Jang JH et al (2020) Breast cancer cell-derived soluble CD44 promotes tumor progression by triggering macrophage IL1β production. Cancer Res 80:1342–1356

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Garduño AM et al (2017) IL-1β induced methylation of the estrogen receptor ERα gene correlates with EMT and chemoresistance in breast cancer cells. Biochem Biophys Res Commun 490:780–785

    Article  PubMed  Google Scholar 

  • Jung Y-J, Isaacs JS, Lee S, Trepel J, Neckers L (2003) IL-1β mediated up-regulation of HIF-lα via an NFkB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17:1–22

    Article  Google Scholar 

  • Kaplanov I et al (2019) Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti–PD-1 for tumor abrogation. Proc Natl Acad Sci U S A 116:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Karki R, Kanneganti TD (2019) Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer 19:197–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  CAS  PubMed  Google Scholar 

  • Khare S et al (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levinsohn JL et al (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8:e1002638

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu ZY, Yi J, Liu FE (2015) The molecular mechanism of breast cancer cell apoptosis induction by absent in melanoma (AIM2). Int J Clin Exp Med 8:14750–14758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loh CY et al (2019) Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: functions and therapeutic implication. Front Oncol 9:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Luborsky J, Barua A, Edassery S, Bahr JM, Edassery SL (2020) Inflammasome expression is higher in ovarian tumors than in normal ovary. PLoS One 15:1–19

    Article  Google Scholar 

  • Man SM (2018) Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol 15:721–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) <Molecular Cell 2002 Martinon.pdf>. 10:417–426

    Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  • Mishra SR et al (2022) Inflammasomes in cancer: effect of epigenetic and autophagic modulations. Semin Cancer Biol 83:399–412

    Article  CAS  PubMed  Google Scholar 

  • Missiroli S et al (2021) Targeting the nlrp3 inflammasome as a new therapeutic option for overcoming cancer. Cancers (Basel) 13:1–26

    Article  Google Scholar 

  • Multhoff G, Molls M, Radons J (2012) Chronic inflammation in cancer development. Front Immunol 2:1–17

    Article  Google Scholar 

  • Muñoz-Planillo R et al (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–1153

    Article  PubMed  PubMed Central  Google Scholar 

  • Negash AA, Olson RM, Griffin S, Gale M (2019) Modulation of calcium signaling pathway by hepatitis C virus core protein stimulates NLRP3 inflammasome activation. PLoS Pathog 15:1–24

    Article  Google Scholar 

  • Patra SK (2008) Ras regulation of DNA-methylation and cancer. Exp Cell Res 314:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Poli G et al (2020) Epigenetic mechanisms of inflammasome regulation. Int J Mol Sci 21:1–15

    Article  Google Scholar 

  • Rastgoo N, Abdi J, Hou J, Chang H (2017) Role of epigenetics-microRNA axis in drug resistance of multiple myeloma. J Hematol Oncol 10:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathinam VAK et al (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:606–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JC et al (2003) Comparative analysis of apoptosis and inflammation genes of mice and humans. Genome Res 13:1376–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo Y et al (2002) Proinflammatory cytokine IL-1β promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J Immunol 169:469–475

    Article  CAS  PubMed  Google Scholar 

  • Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Kanneganti TD (2016) The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol 213:617–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrimali D et al (2013) Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 341:139–149

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Article  PubMed  Google Scholar 

  • St. John MA et al (2009) Proinflammatory mediators upregulate snail in head and neck squamous cell carcinoma. Clin Cancer Res 15:6018–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storr SJ et al (2017) Macrophage-derived interleukin-1beta promotes human breast cancer cell migration and lymphatic adhesion in vitro. Cancer Immunol Immunother 66:1287–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  • Ting JPY et al (2008) The NLR gene family: a standard nomenclature. Immunity 28:285–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulotta C et al (2019) Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clin Cancer Res 25:2769–2782

    Article  CAS  PubMed  Google Scholar 

  • Westbrook K, Stearns V (2013) Pharmacogenomics of breast cancer therapy: an update. Pharmacol Ther 139:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hu G, Chen J, Xie G (2014) Interleukin 1β and interleukin 1 receptor antagonist gene polymorphisms and cervical cancer: a meta-analysis. Int J Gynecol Cancer 24:984–990

    Article  PubMed  Google Scholar 

  • Zhao Y et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–602

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Liwinski T, Elinav E (2020) Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 6:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navkiran Kaur .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharda, S., Avasthi, A., Kaur, N. (2024). Structuring Inflammasome-Epigenome: Phenotypic Axis in Gynecological Cancers. In: Sobti, R.C., Ganguly, N.K., Kumar, R. (eds) Handbook of Oncobiology: From Basic to Clinical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-6263-1_25

Download citation

Publish with us

Policies and ethics