Skip to main content

Current Pathophysiology, Treatment, and Future Perspective for Prostate Cancer

  • Reference work entry
  • First Online:
Handbook of Oncobiology: From Basic to Clinical Sciences
  • 104 Accesses

Abstract

Prostate Cancer (PCa) is one of the most common types of cancer in Western countries Asia due to uncontrolled cell proliferation of the prostate gland. It is the most prominent cause of death in males worldwide. In 2017, approximately 3.3 million existing survivors and 161,000 new diagnoses were reported. Various review and research articles were studied to identify pathophysiological targets for the development of new drugs for prostate cancer. Pathophysiologically, several genes are entailed with its development in addition to environmental agents like diet and inflammation. Main molecular prognostic and pathophysiological targets are tumor suppressor genes, PTEN, NKX3.1, Retinoblastoma, p53, BRCA1, BRCA2, androgen receptor, GSTP1, CYP17, SRD5A2 growth factors and its receptors, and oxidative stress involved in the initiation, maturation, and progression of PCa. Several therapies are used for the management of prostate cancer and somehow these approaches are successful to get rid of prostate cancer but associated with some serious side effects, which limit the use of chemical-based therapy so that researchers are enforced to investigate new safer, and effective therapeutic strategies. The present review highlights the symptoms, possible pathophysiological biomarkers, and available therapeutical strategies to prevent PCa, which can help to understand the correlation between pathophysiology and therapeutic agents to discover new antiprostate cancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad A, Biersack B, Li Y, Bao B, Kong D, Ali S, Banerjee S, Sarkar FH (2013) Perspectives on the role of isoflavones in prostate cancer. AAPS J 15(4):991–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alanee SR, Glogowski EA, Schrader KA, Eastham JA, Offit K (2014) Clinical features and management of BRCA1 and BRCA2-associated prostate cancer. Front Biosci-Elite 6(1):15–30

    Article  Google Scholar 

  • Alibek K, Bekmurzayeva A, Mussabekova A, Sultankulov B (2012) Using antimicrobial adjuvant therapy in cancer treatment: a review. Infect Agents Cancer 7(1):1–10

    Article  Google Scholar 

  • Barnett P, Arnold RS, Mezencev R, Chung LW, Zayzafoon M, Odero-Marah V (2011) Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells. Biochem Biophys Res Commun 404(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3. Biotech 3(6):439–459

    Google Scholar 

  • Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, Iversen P, Bhattacharya S, Carles J, Chowdhury S, Davis ID (2014) Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 371(5):424–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925

    Article  CAS  PubMed  Google Scholar 

  • Boccon-Gibod L, van der Meulen E, Persson BE (2011) An update on the use of gonadotropin-releasing hormone antagonists in prostate cancer. Ther Adv Urol 3(3):127–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boettcher AN, Usman A, Morgans A, VanderWeele DJ, Sosman J, Wu JD (2019) Past, current, and future of immunotherapies for prostate cancer. Front Oncol 9:884

    Article  PubMed  PubMed Central  Google Scholar 

  • Bommareddy A, Eggleston W, Prelewicz S, Antal A, Witczak Z, Mccune DF, Vanwert AL (2013) Chemoprevention of prostate cancer by major dietary phytochemicals. Anticancer Res 33(10):4163–4174

    CAS  PubMed  Google Scholar 

  • Boulton SJ (2006) Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans 34(5):633–645

    Article  CAS  PubMed  Google Scholar 

  • Bruns CJ, Solorzano CC, Harbison MT, Ozawa S, Tsan R, Fan D, Abbruzzese J, Traxler P, Buchdunger E, Radinsky R, Fidler IJ (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 60(11):2926–2935

    CAS  PubMed  Google Scholar 

  • Cheung KL, Khor TO, Kong AN (2009) Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane or curcumin and sulforaphane in the inhibition of inflammation. Pharm Res 26(1):224–231

    Article  CAS  PubMed  Google Scholar 

  • Crawford S (2014) Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: a new therapeutic approach to disease progression and recurrence. Ther Adv Med Oncol 6(2):52–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amico AV, Chen MH, Catalona WJ, Sun L, Roehl KA, Moul JW (2007) Prostate cancer-specific mortality after radical prostatectomy or external beam radiation therapy in men with 1 or more high-risk factors. Cancer 110(1):56–61

    Article  PubMed  Google Scholar 

  • De Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, Roessner M (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376(9747):1147–1154

    Article  PubMed  Google Scholar 

  • Dehm SM, Tindall DJ (2006) Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J Biol Chem 281(38):27882–27893

    Article  CAS  PubMed  Google Scholar 

  • Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34(5):1416–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggener SE, Cifu AS, Nabhan C (2015) Prostate cancer screening. JAMA 314(8):825–826

    Article  CAS  PubMed  Google Scholar 

  • Endrini S, Rahmat A, Ismail P, Taufiq-Yap YH (2014) Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus) and its mechanism of action towards c-myc gene expression and apoptotic pathway. Med J Indonesia 23(4):203–208

    Article  Google Scholar 

  • Fitzpatrick JM, de Wit R (2014) Taxane mechanisms of action: potential implications for treatment sequencing in metastatic castration-resistant prostate cancer. Eur Urol 65(6):1198–1204

    Article  CAS  PubMed  Google Scholar 

  • Frohlich DA, McCabe MT, Arnold RS, Day ML (2008) The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 27(31):4353–4362

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Budhraja A, Cheng S, Liu EH, Chen J, Yang Z, Chen D, Zhang Z, Shi X (2011) Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways. Cell Death Dis 2(4):e140–e140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Porter AT, Grignon DJ, Edson Pontes J, Honn KV (1997) Diagnostic and prognostic markers for human prostate cancer. Prostate 31(4):264–281

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen WR (2012) The evolving role of immunotherapy in prostate cancer. Ann Oncol 23:viii22–viii27

    Article  PubMed  Google Scholar 

  • Goldspiel BR, Kohler DR (1990) Flutamide: an antiandrogen for advanced prostate cancer. DICP 24(6):616–623

    Article  CAS  PubMed  Google Scholar 

  • Gsur A, Bernhofer G, Hinteregger S, Haidinger G, Schatzl G, Madersbacher S, Marberger M, Vutuc C, Micksche M (2000) A polymorphism in the CYP17 gene is associated with prostate cancer risk. Int J Cancer 87(3):434–437

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsdottir K, Ashworth A (2006) The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25(43):5864–5874

    Article  CAS  PubMed  Google Scholar 

  • Hema S, Thambiraj S, Shankaran DR (2018) Nanoformulations for targeted drug delivery to prostate cancer: an overview. J Nanosci Nanotechnol 18(8):5171–5191

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel NP, Holzapfel BM, Champ S, Feldthusen J, Clements J, Hutmacher DW (2013) The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. Int J Mol Sci 14(7):14620–14646

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, He Y, Cui XX, Goodin S, Wang H, Du ZY, Li D, Zhang K, Tony Kong AN, DiPaola RS, Yang CS (2014) Potent inhibitory effect of δ-tocopherol on prostate cancer cells cultured in vitro and grown as xenograft tumors in vivo. J Agric Food Chem 62(44):10752–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JG, Pereira-Smith OM (2006) p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res 66(17):8356–8360

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Wang W, He Q, Wu Y, Lu Z, Sun J, Liu Z, Shao Y, Wang A (2017) Oleic acid induces apoptosis and autophagy in the treatment of tongue squamous cell carcinomas. Sci Rep 7(1):1–11

    Google Scholar 

  • Jiang Q, Wong J, Fyrst H, Saba JD, Ames BN (2004) γ-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc Natl Acad Sci 101(51):17825–17830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaarbø M, Klokk TI, Saatcioglu F (2007) Androgen signaling and its interactions with other signaling pathways in prostate cancer. BioEssays 29(12):1227–1238

    Article  PubMed  Google Scholar 

  • Kassouf W, Tanguay S, Aprikian AG (2003) Nilutamide as second line hormone therapy for prostate cancer after androgen ablation fails. J Urol 169(5):1742–1744

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Uehara H, Karashima T, Shepherd DL, Killion JJ, Fidler IJ (2003) Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res 9(3):1200–1210

    CAS  PubMed  Google Scholar 

  • Kim TJ, Lee YH, Koo KC (2021) Current status and future perspectives of androgen receptor inhibition therapy for prostate cancer: a comprehensive review. Biomol Ther 11(4):492

    CAS  Google Scholar 

  • Kim YS, Li XF, Kang KH, Ryu B, Kim SK (2014) Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells. BMB Rep 47(8):433

    Article  PubMed  PubMed Central  Google Scholar 

  • Koshkin VS, Small EJ (2018) Apalutamide in the treatment of castrate-resistant prostate cancer: evidence from clinical trials. Ther Adv Urol 10(12):445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133(10):3262S–3267S

    Article  CAS  PubMed  Google Scholar 

  • Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci 91(24):11733–11737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J, Gleave ME, Witte ON, Liu X, Wu H (2006) NKX3. 1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9(5):367–378

    Article  CAS  PubMed  Google Scholar 

  • Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M (2003) Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 63(23):8118–8121

    CAS  PubMed  Google Scholar 

  • Lomenick B, Shi H, Huang J, Chen C (2015) Identification and characterization of β-sitosterol target proteins. Bioorg Med Chem Lett 25(21):4976–4979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Rankin GO, Li Z, DePriest L, Chen YC (2011) Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem 128(2):513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luscombe CJ, French ME, Liu S, Saxby MF, Farrell WE, Jones PW, Fryer AA, Strange RC (2002) Glutathione S-transferase GSTP1 genotypes are associated with response to androgen ablation therapy in advanced prostate cancer. Cancer Detect Prev 26(5):376–380

    Article  CAS  PubMed  Google Scholar 

  • Macleod KF (2010) The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer? J Clin Invest 120(12):4179–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee JA, Abdulkadir SA, Milbrandt J (2003) Haploinsufficiency at the Nkx3. 1 locus: a paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3(3):273–283

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Nakamura T (1996) Emerging multipotent aspects of hepatocyte growth factor. J Biochem 119(4):591–600

    Article  CAS  PubMed  Google Scholar 

  • McLeod D, Zinner N, Tomera K, Gleason D, Fotheringham N, Campion M, Garnick MB, Abarelix Study Group (2001) A phase 3, multicenter, open-label, randomized study of abarelix versus leuprolide acetate in men with prostate cancer. Urology 58(5):756–761

    Article  CAS  PubMed  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, Bell R (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182):66–71

    Article  CAS  PubMed  Google Scholar 

  • Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ (1999) Detailed methylation analysis of the glutathione S-transferase Ï€ (GSTP1) gene in prostate cancer. Oncogene 18(6):1313–1324

    Article  CAS  PubMed  Google Scholar 

  • Montironi R, Mazzucchelli R, Lopez-Beltran A, Cheng L, Scarpelli M (2007) Mechanisms of disease: high-grade prostatic intraepithelial neoplasia and other proposed preneoplastic lesions in the prostate. Nat Clin Pract Urol 4(6):321–332

    Article  PubMed  Google Scholar 

  • Mueller GP, Driscoll WJ (2009) Biosynthesis of oleamide. Vitam Horm 81:55–78

    Article  CAS  PubMed  Google Scholar 

  • Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY, Stanimirovic A, Encioiu E, Neill M, Loblaw DA, Trachtenberg J (2007) Expression of the TMPRSS2: ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer 97(12):1690–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narod SA, Neuhausen S, Vichodez G, Armel S, Lynch HT, Ghadirian P, Cummings S, Olopade O, Stoppa-Lyonnet D, Couch F, Wagner T (2008) Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 99(2):371–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson WG, De Marzo AM, DeWeese TL (2001) The molecular pathogenesis of prostate cancer: implications for prostate cancer prevention. Urology 57(4):39–45

    Article  CAS  PubMed  Google Scholar 

  • Noller HF (2012) Evolution of protein synthesis from an RNA world. Cold Spring Harb Perspect Biol 4(4):a003681

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S (2016, June) The relationship between the nucleolus and cancer: current evidence and emerging paradigms. In: Seminars in cancer biology, vol 37. Academic, pp 36–50

    Google Scholar 

  • Ørsted DD, Bojesen SE (2013) The link between benign prostatic hyperplasia and prostate cancer. Nat Rev Urol 10(1):49–54

    Article  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Patel JC, Maughan BL, Agarwal AM, Batten JA, Zhang TY, Agarwal N (2013) Emerging molecularly targeted therapies in castration refractory prostate cancer. Prostate Cancer:2013

    Google Scholar 

  • Pelletier J, Thomas G, Volarević S (2018) Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer 18(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Phin S, Moore MW, Cotter PD (2013) Genomic rearrangements of PTEN in prostate cancer. Front Oncol 3:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    Article  CAS  PubMed  Google Scholar 

  • Prescott J, Coetzee GA (2006) Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Lett 231(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Melkamu T, Upadhyaya P, Kassie F (2011) Indole-3-carbinol inhibited tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice when administered during the post-initiation or progression phase of lung tumorigenesis. Cancer Lett 311(1):57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11(3):495–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayburn ER, Ezell SJ, Zhang R (2009) Anti-inflammatory agents for cancer therapy. Mol Cell Pharmacol 1(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman Y, Rosenberg JE (2012) Abiraterone acetate: oral androgen biosynthesis inhibitor for treatment of castration-resistant prostate cancer. Drug Des Devel Ther 6:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakr WA, Grignon DJ (1997) Prostate cancer: indicators of aggressiveness. Eur Urol 32:15–23

    PubMed  Google Scholar 

  • Sanda MG, Dunn RL, Michalski J, Sandler HM, Northouse L, Hembroff L, Lin X, Greenfield TK, Litwin MS, Saigal CS, Mahadevan A (2008) Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med 358(12):1250–1261

    Article  CAS  PubMed  Google Scholar 

  • Schalken J, Fitzpatrick JM (2016) Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int 117(2):215–225

    Article  CAS  PubMed  Google Scholar 

  • Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, De Wit R, Mulders P, Chi KN, Shore ND, Armstrong AJ (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367(13):1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Schweizer MT, Yu EY (2017) AR-signaling in human malignancies: prostate cancer and beyond. Cancers 9(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, Morrissey C, Zhang X, Comstock CE, Witkiewicz AK, Gomella L (2010) The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 120(12):4478–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shore ND (2013) Experience with degarelix in the treatment of prostate cancer. Ther Adv Urol 5(1):11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  PubMed  Google Scholar 

  • Sierra JR, Cepero V, Giordano S (2010) Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 9(1):1–13

    Article  Google Scholar 

  • Solorzano CC, Baker CH, Tsan R, Traxler P, Cohen P, Buchdunger E, Killion JJ, Fidler IJ (2001) Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma. Clin Cancer Res 7(8):2563–2572

    CAS  PubMed  Google Scholar 

  • Sorrenti V, Vanella L, Acquaviva R, Cardile V, Giofrè S, Di Giacomo C (2015) Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int J Oncol 47(4):1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Syed DN, Afaq F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, Setaluri V, Mukhtar H (2011) Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. J Investig Dermatol 131(6):1291–1299

    Article  CAS  PubMed  Google Scholar 

  • Tang NY, Huang YT, Yu CS, Ko YC, Wu SH, Ji BC, Yang JS, Yang JL, Hsia TC, Chen YY, Chung JG (2011) Phenethyl isothiocyanate (PEITC) promotes G2/M phase arrest via p53 expression and induces apoptosis through caspase-and mitochondria-dependent signaling pathways in human prostate cancer DU 145 cells. Anticancer Res 31(5):1691–1702

    CAS  PubMed  Google Scholar 

  • Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon A, Wasielewska T (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324(5928):787–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small EJ, Halabi S, Dawson NA, Stadler WM, Rini BI, Picus J, Gable P, Torti FM, Kaplan E, Vogelzang NJ (2004) Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol. 22(6):1025–33. https://doi.org/10.1200/JCO.2004.06.037. PMID: 15020604.

  • Vanella L, Di Giacomo C, Acquaviva R, Barbagallo I, Li Volti G, Cardile V, Abraham NG, Sorrenti V (2013) Effects of ellagic acid on angiogenic factors in prostate cancer cells. Cancers 5(2):726–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varkaris A, Corn PG, Gaur S, Dayyani F, Logothetis CJ, Gallick GE (2011) The role of HGF/c-Met signaling in prostate cancer progression and c-Met inhibitors in clinical trials. Expert Opin Investig Drugs 20(12):1677–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Gupta V, Singh J, Verma M, Gupta G, Gupta S, Sen R, Ralli M (2015) Significance of p53 and ki-67 expression in prostate cancer. Urolo Ann 7(4):488

    Article  CAS  Google Scholar 

  • Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, Kim K, Sawyers CL (2010) Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci 107(39):16759–16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  CAS  PubMed  Google Scholar 

  • Woenckhaus J, Fenic I (2008) Proliferative inflammatory atrophy: a background lesion of prostate cancer? Andrologia 40(2):134–137

    Article  CAS  PubMed  Google Scholar 

  • Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D, Fields P (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265(5181):2088–2090

    Article  CAS  PubMed  Google Scholar 

  • Xing N, Chen Y, Mitchell SH, Young CY (2001) Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis 22(3):409–414

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, Nair S, Kong ANT (2006) ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis 27(3):437–445

    Article  PubMed  Google Scholar 

  • Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, Amols H, Venkatraman ES, Leibel SA (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53(5):1111–1116

    Article  PubMed  Google Scholar 

  • Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9(1):28–39

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dahiya, M., Yadav, M., Sharma, P., Kumar, A. (2024). Current Pathophysiology, Treatment, and Future Perspective for Prostate Cancer. In: Sobti, R.C., Ganguly, N.K., Kumar, R. (eds) Handbook of Oncobiology: From Basic to Clinical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-6263-1_22

Download citation

Publish with us

Policies and ethics