Skip to main content

Role of Metrology in the Advanced Manufacturing Processes

  • Reference work entry
  • First Online:
Handbook of Metrology and Applications
  • 1176 Accesses

Abstract

Metrology is the science of measurement used to measure various features (majorly dimensional and geometrical parameters) of components to improve the quality and reliability of parts for scientific and engineering applications. It needs to keep up with developments in manufacturing (e.g., automation) and current products with their associated technology, such as nanotechnology, microtechnology, and additive manufacturing to support quality management and process control effectively. When dimensions are decreased to micrometer or nanoscale, advanced measuring instruments are required to measure a manufactured component’s dimensional and geometrical characteristics. This chapter discussed the role of metrology in the advanced manufacturing process. The in-line metrology role also is discussed for real-time data accessing during manufacturing. The economic benefits of metrology are highlighted in different domains. Precise metrology is required to regulate the measuring instruments to enhance consumer protection and minimize instrument uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • (ISO) IOfS (2020) Technical committees—ISO/TC 261—additive manufacturing

    Google Scholar 

  • Abdelsalam DG, Yao B (2017) Interferometry and its applications in surface metrology. Optical interferometry

    Google Scholar 

  • Ameta G, Lipman R, Moylan S, Witherell P (2015) Investigating the role of geometric dimensioning and tolerancing in additive manufacturing. J Mech Des 137(11)

    Google Scholar 

  • Bauer JM, Bas G, Durakbasa NM, Kopacek P (2015) Development trends in automation and metrology. IFAC-PapersOnLine 48(24):168–172

    Article  Google Scholar 

  • Behera D, Chizari S, Shaw LA, Porter M, Hensleigh R, Xu Z et al (2021) Current challenges and potential directions towards precision microscale additive manufacturing–Part IV: future perspectives. Precis Eng 68:197–205

    Article  Google Scholar 

  • Berry C, Barari A (2018) Closed-loop coordinate metrology for hybrid manufacturing system. IFAC-PapersOnLine 51(11):752–757

    Article  Google Scholar 

  • Bordron M, Mehdi-Souzani C, Bruneau O (2019) Inline measurement strategy for additive manufacturing. Proc Inst Mech Eng B J Eng Manuf 233(5):1402–1411

    Article  Google Scholar 

  • Carmignato S, De Chiffre L, Bosse H, Leach RK, Balsamo A, Estler WT (2020) Dimensional artefacts to achieve metrological traceability in advanced manufacturing. CIRP Ann 69(2):693–716

    Article  Google Scholar 

  • Chua ZY, Ahn IH, Moon SK (2017) Process monitoring and inspection systems in metal additive manufacturing: status and applications. Int J Precision Eng Manuf-Green Technol 4(2):235–245

    Article  Google Scholar 

  • Dai GL, Pohlenz F, Danzebrink HU, Koenders L (2008) Dimensional measurements for micro-and nanotechnology. Key Eng Mat 381:7–10. Trans Tech Publications Ltd

    Article  Google Scholar 

  • De Chiffre L (2007) The role of metrology in modern manufacturing, keynote paper. In Gyenge CS (Ed.) 8th International MTeM Conference 973-9087-83-31–6

    Google Scholar 

  • De Chiffre L, Kunzmann H, Peggs GN, Lucca DA (2003) Surfaces in precision engineering, microengineering and nanotechnology. CIRP Ann 52(2):561–577

    Article  Google Scholar 

  • Durakbasa N, Poszvek G, Bas G, Bauer J (2015) Developments in precision engineering: high precision metrology applications to improve efficiency and quality. In XXI IMEKO world congress, Prague

    Google Scholar 

  • Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445

    Article  Google Scholar 

  • Feng X, Senin N, Su R, Ramasamy S, Leach R (2019) Optical measurement of surface topographies with transparent coatings. Opt Lasers Eng 121:261–270

    Article  Google Scholar 

  • Foreman MR, Giusca CL, Coupland JM, Török P, Leach RK (2013) Determination of the transfer function for optical surface topography measuring instruments—a review. Meas Sci Technol 24(5):052001

    Article  ADS  Google Scholar 

  • Gao W, Haitjema H, Fang FZ, Leach RK, Cheung CF, Savio E, Linares JM (2019) On-machine and in-process surface metrology for precision manufacturing. CIRP Ann 68(2):843–866

    Article  Google Scholar 

  • Gapinski B, Wieczorowski M, Marciniak-Podsadna L, Dybala B, Ziolkowski G (2014) Comparison of different method of measurement geometry using CMM, optical scanner and computed tomography 3D. Proc Eng 69:255–262

    Article  Google Scholar 

  • Hong Y, Chang T (2002) A comprehensive review of tolerancing research. Int J Prod Res 40:2425–2459

    Article  MATH  Google Scholar 

  • Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1)

    Google Scholar 

  • Imkamp D, Berthold J, Heizmann M, Kniel K, Manske E, Peterek M et al (2016) Challenges and trends in manufacturing measurement technology–the “Industrie 4.0” concept. J Sensors Sensor Syst 5(2):325–335

    Article  ADS  Google Scholar 

  • Jadayel M, Khameneifar F (2020) Improving geometric accuracy of 3D printed parts using 3D metrology feedback and mesh morphing. J Manuf Mat Proc 4(4):112

    Google Scholar 

  • Jiang XJ, Whitehouse DJ (2012) Technological shifts in surface metrology. CIRP Ann 61(2):815–836

    Article  Google Scholar 

  • Jurrens KK (1999) Standards for the rapid prototyping industry. Rapid Prototyp J 5(4):169–178

    Article  Google Scholar 

  • Kiraci E, Franciosa P, Turley GA, Olifent A, Attridge A, Williams MA (2017) Moving towards in-line metrology: evaluation of a laser radar system for in-line dimensional inspection for automotive assembly systems. Int J Adv Manuf Technol 91(1):69–78

    Article  Google Scholar 

  • Koumoulos EP, Tofail SA, Silien C, De Felicis D, Moscatelli R, Dragatogiannis DA et al (2018) Metrology and nano-mechanical tests for nanomanufacturing and nano-bio interface: challenges & future perspectives. Mater Des 137:446–462

    Article  Google Scholar 

  • Kunzmann H, Pfeifer T, Schmitt R, Schwenke H, Weckenmann A (2005) Productive metrology-adding value to manufacture. CIRP Ann 54(2):155–168

    Article  Google Scholar 

  • Lazos-Martınez RJ, Gonzalez-Rojano N (2013) Nanometrology in emerging economies: the case of Mexico. MAPAN-J Metrol Soc India 28:299–309

    Google Scholar 

  • Leach R (2016) Metrology for additive manufacturing. Measur Control 49(4):132–135

    Article  Google Scholar 

  • Leach RK, Bourell D, Carmignato S, Donmez A, Senin N, Dewulf W (2019) Geometrical metrology for metal additive manufacturing. CIRP Ann 68(2):677–700

    Article  Google Scholar 

  • Li L, McGuan R, Kavehpour P, Candler RN (2018) Precision enhancement of 3D printing via in situ metrology. In: 2018 international solid freeform fabrication symposium. University of Texas at Austin

    Google Scholar 

  • Link A (2021) The economics of metrology, vol No. 21-1. University of North Carolina at Greensboro, Department of Economics

    Google Scholar 

  • Liu Y, Blunt L, Gao F, Jiang X (2021) A simple calibration method for a fringe projection system embedded within an additive manufacturing machine. Mach Des 9(9):200

    Google Scholar 

  • Mian SH, Al-Ahmari A (2014) New developments in coordinate measuring machines for manufacturing industries. Int J Metrol Quality Eng 5(1):101

    Article  Google Scholar 

  • Moenning DIF (2006) Ensure success with inline-metrology

    Google Scholar 

  • Moona G, Jewariya M, Sharma R (2019) Relevance of dimensional metrology in manufacturing industries. Mapan 34(1):97–104

    Article  Google Scholar 

  • Moroni G, Petro S, Polini W (2017) Geometrical product specification and verification in additive manufacturing. CIRP Ann 66(1):157–160

    Article  Google Scholar 

  • Musso G, Senin N, Galetto M, Leach RK (2016) Towards uncertainty in dimensional metrology of surface features for advanced manufacturing. In Proceedings of 16th International Euspen Conference (Nottingham, UK, June 63–June 64)

    Google Scholar 

  • Nicholson PI, Wallace P (2007) Development of a comprehensive in-line quality control system for printed circuit board assemblies. Circuit World

    Google Scholar 

  • Panas RM, Cuadra JA, Mohan KA, Morales RE (2021) A systems approach to estimating the uncertainty limits of X-ray radiographic metrology. J Micro Nano-Manuf 9(1)

    Google Scholar 

  • Pineda J, Marrugo AG, Romero LA (2019) Developing a robust acquisition system for fringe projection profilometry. J Phys Conf Ser 1247(1):012053. IOP Publishing

    Article  Google Scholar 

  • Quinn T, Kovalevsky J (2005) The development of modern metrology and its role today. Philos Trans R Soc A Math Phys Eng Sci 363(1834):2307–2327

    Article  ADS  Google Scholar 

  • Robertson K, Swanepoel JA (2015) The economics of metrology. Res Pap 6:2015

    Google Scholar 

  • Rockett TB, Boone NA, Richards RD, Willmott JR (2021) Thermal imaging metrology using high dynamic range near-infrared photovoltaic-mode camera. Sensors 21(18):6151

    Article  ADS  Google Scholar 

  • Rodrigues Filho BA, Gonçalves RF (2015) Legal metrology, the economy and society: a systematic literature review. Measurement 69:155–163

    Article  ADS  Google Scholar 

  • Rupal BS, Anwer N, Secanell M, Qureshi AJ (2020a) Geometric tolerance characterization of laser powder bed fusion processes based on skin model shapes. Proc CIRP 92:169–174

    Article  Google Scholar 

  • Rupal BS, Anwer N, Secanell M, Qureshi AJ (2020b) Geometric tolerance and manufacturing assemblability estimation of metal additive manufacturing (AM) processes. Mater Des 194:108842

    Article  Google Scholar 

  • Savio E, De Chiffre L, Carmignato S, Meinertz J (2016) Economic benefits of metrology in manufacturing. CIRP Ann 65(1):495–498

    Article  Google Scholar 

  • Schmitt R, Pavim A (2008) Fusion of micro-metrology techniques for the flexible inspection of MEMS/MOEMS assembly. In: Optical micro-and Nanometrology in microsystems technology II, vol 6995, SPIE, pp 148–159

    Google Scholar 

  • Senin N, Leach R (2018) Information-rich surface metrology. Proc Cirp 75:19–26

    Article  Google Scholar 

  • Shimizu Y, Chen LC, Kim DW, Chen X, Li X, Matsukuma H (2021) An insight into optical metrology in manufacturing. Meas Sci Technol 32(4):042003

    ADS  Google Scholar 

  • Shulunov VR (2016) Several advantages of the ultra high-precision additive manufacturing technology. Int J Adv Manuf Technol 85(9):1941–1945

    Article  Google Scholar 

  • Sładek J, Błaszczyk PM, Kupiec M, Sitnik R (2011) The hybrid contact–optical coordinate measuring system. Measurement 44(3):503–510

    Article  ADS  Google Scholar 

  • Standardization IOf (2020) Standards by ISO/TC 261—additive manufacturing

    Google Scholar 

  • Tofail SA, Mani A, Bauer J, Silien C (2018) In situ, real-time infrared (IR) imaging for metrology in advanced manufacturing. Adv Eng Mater 20(6):1800061

    Article  Google Scholar 

  • Tosello G, Hansen HN, Gasparin S (2009) Applications of dimensional micro metrology to the product and process quality control in manufacturing of precision polymer micro components. CIRP Ann 58(1):467–472

    Article  Google Scholar 

  • Ukraintsev VA, Banke GW Jr (2012) Review of reference metrology for nanotechnology: significance, challenges, and solutions. J Micro/Nanolithography MEMS MOEMS 11(1):011010

    Article  Google Scholar 

  • Villarraga-Gómez H (2016) X-ray computed tomography for dimensional measurements. In: Digital imaging 2016, pp 44–57

    Google Scholar 

  • Villarraga-Gómez H, Peitsch CM, Ramsey A, Smith ST (2018) The role of computed tomography in additive manufacturing. In 2018 ASPE and euspen summer topical meeting: advancing precision in additive manufacturing. Vol. 69, pp 201–209

    Google Scholar 

  • Vora HD, Sanyal S (2020) A comprehensive review: metrology in additive manufacturing and 3D printing technology. Progress Addit Manuf 5(4):319–353

    Article  Google Scholar 

  • Weckenmann A, Kraemer P, Hoffmann J (2007) Manufacturing metrology–state of the art and prospects. Proc ISMQC 9(1):568–601

    Google Scholar 

  • Weckenmann A, Jiang X, Sommer KD, Neuschaefer-Rube U, Seewig J, Shaw L, Estler T (2009) Multisensor data fusion in dimensional metrology. CIRP Ann 58(2):701–721

    Article  Google Scholar 

  • Weckenmann A, Krämer P, Akkasoglu G (2012) Metrology-Base for scientific cognition and technical production. In: Advanced materials research, vol 498. Trans Tech Publications Ltd., pp 169–176

    Google Scholar 

  • Zanini F, Sbettega E, Carmignato S (2018) X-ray computed tomography for metal additive manufacturing: challenges and solutions for accuracy enhancement. Proc Cirp 75:114–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girija Moona .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pant, M., Moona, G., Nagdeve, L., Kumar, H. (2023). Role of Metrology in the Advanced Manufacturing Processes. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2074-7_58

Download citation

Publish with us

Policies and ethics