Skip to main content

Pathology-Pathophysiology: Ultrastructure of the Neurogenic Bladder

  • Reference work entry
  • First Online:
Handbook of Neurourology
  • 439 Accesses

Abstract

The knowledge of the lower urinary tract (LUT) ultrastructure has increased substantially during the last decades. It has resulted in discovering new structures and a detailed picture of tissue, nerves, receptors, transmitters acting to create a sensation, motor relaxation, bladder wall elasticity, and muscle contraction. It has led to a stronger hypothesis on how bladder and urethra usually work and how in pathological conditions.

To understand why different parts of the LUT show specific actions in neurologic conditions, besides the remaining innervation and changes in these structures, changes in the tissues’ microstructure are essential. It is generally agreed that microstructure and function are highly interrelated and influence each other and provoke changes both ways.

Haferkamp summarizes three distinctive patterns occurring separately or in combination: degeneration associated with impaired detrusor contractility; dysfunction as in detrusor overactivity; myohypertrophy of the detrusor with bladder outflow obstruction (Haferkamp, Textbook of the Neurogenic Bladder. CRC Press, 2016). On top of this come the changes related to age, also in the neurological impaired LUT.

Most patients with neurogenic bladder need alternative ways to regulate filling and special techniques to empty it. These treatments can, in their own right, lead to extra changes during follow-up.

In the following, data from animal studies and human studies will be discussed. It shows how much the ultrastructure changed and the consequences for the neurogenic LUT function.

Often distinction has been made between lower motor neuron lesions (LMNL) and upper motor neuron lesions (UML).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Haferkamp, Ultrastructure of neurogenic bladders, in Textbook of the Neurogenic Bladder, ed. by J. Corcos, D. Ginsberg, K. G. Boca Raton, 3rd edn., (CRC Press, Boca raton, US, 2016), pp. 89–96

    Google Scholar 

  2. M. Wolnicki, V. Aleksandrovich, K. Gil, Interstitial cells of Cajal and telocytes in the urinary system: Facts and distribution. Folia Med. Cracov. 56, 81–89 (2016)

    PubMed  Google Scholar 

  3. A.F. Brading, K.D. McCloskey, Mechanisms of disease: Specialised interstitial cells of the urinary tract--an assessment of current knowledge. Nat. Clin. Pract. Urol. 2, 546–554 (2005)

    Article  PubMed  Google Scholar 

  4. K.D. McCloskey, Interstitial cells of Cajal in the urinary tract. Handb. Exp. Pharmacol. 202, 233–254 (2011)

    Article  CAS  Google Scholar 

  5. C.H. Fry, Interstitial cells in the urinary tract, where are they and what do they do? BJU Int. 114, 434–435 (2014)

    Article  PubMed  Google Scholar 

  6. A. Kanai, C. Fry, A. Hanna-Mitchell, et al., Do we understand any more about bladder interstitial cells?-ICI-RS 2013. Neurourol. Urodyn. 33, 573–576 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Z. Jin, Y. Ding, R. Xue, et al., Involvement of interstitial cells of Cajal in bladder dysfunction in mice with experimental autoimmune encephalomyelitis. Int. Urol. Nephrol. 49, 1353–1359 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. T. Gevaert, R. De Vos, W. Everaerts, et al., Characterisation of upper lamina propria interstitial cells in bladders from patients with neurogenic detrusor overactivity and bladder pain syndrome. J. Cell. Mol. Med. 15, 2586–2593 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  9. C. Traini, M.S. Fausssone-Pellegrini, D. Guasti, et al., Adaptive changes of telocytes in the urinary bladder of patients affected by neurogenic detrusor overactivity. J. Cell. Mol. Med. 22, 195–206 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. M.G. Vannucchi, C. Traini, D. Guasti, et al., Telocytes subtypes in human urinary bladder. J. Cell. Mol. Med. 18, 2000–2008 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W.C. De Groat, N. Yoshimura, Changes in afferent activity after spinal cord injury. Neurourol. Urodyn. 29, 63–76 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  12. R. Crowe, H.E. Moss, C.R. Chapple, et al., Patients with lower motor spinal cord lesion: A decrease of vasoactive intestinal polypeptide, calcitonin gene-related peptide and substance P, but not neuropeptide Y and somatostatin-immunoreactive nerves in the detrusor muscle of the bladder. J. Urol. 145, 600–604 (1991)

    Article  CAS  PubMed  Google Scholar 

  13. E. Shapiro, M.J. Becich, E. Perlman, et al., Bladder wall abnormalities in myelodysplastic bladders: A computer-assisted morphometric analysis. J. Urol. 145, 1024–1029 (1991)

    Article  CAS  PubMed  Google Scholar 

  14. D. Van Velzen, K.R. Krishnan, K.F. Parsons, et al., Comparative pathology of dome and trigone of urinary bladder mucosa in paraplegics and tetraplegics. Paraplegia 33, 565–572 (1995)

    PubMed  Google Scholar 

  15. D. van Velzen, K.R. Krishnan, K.F. Parsons, et al., Epidermal growth factor receptor in the vesical urothelium of paraplegic and tetraplegic patients: An immunohistochemical study. Spinal Cord 34, 578–586 (1996)

    Article  PubMed  Google Scholar 

  16. S. Vaidyanathan, D. van Velzen, K.R. Krishnan, et al., Nerve fibres in urothelium and submucosa of neuropathic urinary bladder: An immunohistochemical study with S-100 and neurofilament. Paraplegia 34, 137–151 (1996)

    CAS  PubMed  Google Scholar 

  17. Q. Ballouhey, J.N. Panicker, C. Mazerolles, et al., Sphingosine kinase 1 urothelial expression is increased in patients with neurogenic detrusor overactivity. Int. Braz J Urol 41, 1141–1147 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  18. C. Traini, G. Del Popolo, M. Lazzeri, et al., γEpithelial Na(+) channel (γENaC) and the acid-sensing Ion Channel 1 (ASIC1) expression in the urothelium of patients with neurogenic detrusor overactivity. BJU Int. 116, 797–804 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. J. Janzen, P.N. Vuong, U. Bersch, et al., Bladder tissue biopsies in spinal cord injured patients: Histopathologic aspects of 61 cases. Neurourol. Urodyn. 17, 525–530 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. J. Janzen, U. Bersch, B. Pietsch-Breitfeld, et al., Urinary bladder biopsies in spinal cord injured patients. Spinal Cord 39, 568–570 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. T.A. Schlager, R. Grady, S.E. Mills, et al., Bladder epithelium is abnormal in patients with neurogenic bladder due to myelomeningocele. Spinal Cord 42, 163–168 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. A. Elbadawi, N.M. Resnick, J. Dörsam, et al., Structural basis of neurogenic bladder dysfunction. I. Methods of prospective ultrastructural study and overview of the findings. J. Urol. 169, 540–546 (2003)

    Article  PubMed  Google Scholar 

  23. A. Haferkamp, J. Dörsam, N.M. Resnick, et al., Structural basis of neurogenic bladder dysfunction. II. Myogenic basis of detrusor hyperreflexia. J. Urol. 169, 547–554 (2003)

    Article  PubMed  Google Scholar 

  24. A. Haferkamp, J. Dörsam, N.M. Resnick, et al., Structural basis of neurogenic bladder dysfunction. III. Intrinsic detrusor innervation. J. Urol. 169, 555–562 (2003)

    Article  PubMed  Google Scholar 

  25. O.J. Wiseman, C.M. Brady, I.F. Hussain, et al., The ultrastructure of bladder lamina propria nerves in healthy subjects and patients with detrusor hyperreflexia. J. Urol. 168, 2040–2045 (2002)

    Article  PubMed  Google Scholar 

  26. D.E. Neal, P.R. Bogue, R.E. Williams, Histological appearances of the nerves of the bladder in patients with denervation of the bladder after excision of the rectum. Br. J. Urol. 54, 658–666 (1982)

    Article  CAS  PubMed  Google Scholar 

  27. C. Traini, G. Del Popolo, M.S. Faussone-Pellegrini, et al., Nerve sprouting and neurogenic inflammation characterise the neurogenic detrusor overactive bladder of patients no longer responsive to drug therapies. J. Cell. Mol. Med. 23, 4076–4087 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G. Burnstock, Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 10, 103–155 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. K.E. Andersson, Purinergic signalling in the urinary bladder. Auton. Neurosci. 191, 78–81 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. E.J. Gonzalez, T.J. Heppner, M.T. Nelson, et al., Purinergic signalling underlies transforming growth factor-β-mediated bladder afferent nerve hyperexcitability. J. Physiol. 594, 3575–3588 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S.N. Datta, A. Roosen, A. Pullen, et al., Immunohistochemical expression of muscarinic receptors in the urothelium and suburothelium of neurogenic and idiopathic overactive human bladders, and changes with botulinum neurotoxin administration. J. Urol. 184, 2578–2585 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. A.N. Apostolidis, Y. Yiangou, C.M. Brady, et al., Endothelial nitric oxide synthase expression in neurogenic urinary bladders treated with intravesical resiniferatoxin. BJU Int. 93, 336–340 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. N. Wada, T. Shimizu, N. Shimizu, et al., Therapeutic effects of inhibition of brain-derived neurotrophic factor on voiding dysfunction in mice with spinal cord injury. Am. J. Physiol. Renal Physiol. 317, F1305–F1310 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. N. Shimizu, N. Wada, T. Shimizu, et al., Role of p38 MAP kinase signaling pathways in storage and voiding dysfunction in mice with spinal cord injury. Neurourol. Urodyn. 39, 108–115 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. F.A. Kullmann, J.M. Beckel, B. McDonnell, et al., Involvement of TRPM4 in detrusor overactivity following spinal cord transection in mice. Naunyn Schmiedeberg’s Arch. Pharmacol. 391, 1191–1202 (2018)

    Article  CAS  Google Scholar 

  36. M. Vanneste, A. Segal, T. Voets, et al., Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat. Rev. Urol. 18, 139–159 (2021)

    Article  PubMed  Google Scholar 

  37. J. Malysz, G.V. Petkov, Urinary bladder smooth muscle ion channels: Expression, function, and regulation in health and disease. Am. J. Physiol. Renal Physiol. 319, F257–F283 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S.F. Chen, Y.H. Jiang, H.C. Kuo, Single onabotulinumtoxinA 200U dose improved clinical symptoms but not urothelial dysfunction in neurogenic detrusor overactivity due to spinal cord injury. J. Formos. Med. Assoc. 118, 125–133 (2019)

    Article  PubMed  Google Scholar 

  39. C. Doyle, V. Cristofaro, B.S. Sack, et al., The role of the mucosa in modulation of evoked responses in the spinal cord injured rat bladder. Neurourol. Urodyn. 37, 1583–1593 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  40. N. Ueda, M. Kondo, K. Takezawa, et al., Bladder urothelium converts bacterial lipopolysaccharide information into neural signaling via an ATP-mediated pathway to enhance the micturition reflex for rapid defense. Sci. Rep. 10, 21167 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Takezawa, M. Kondo, N. Nonomura, et al., Urothelial ATP signaling: What is its role in bladder sensation? Neurourol. Urodyn. 36, 966–972 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. C.Z. Altuntas, F. Daneshgari, K. Izgi, et al., Connective tissue and its growth factor CTGF distinguish the morphometric and molecular remodeling of the bladder in a model of neurogenic bladder. Am. J. Physiol. Renal Physiol. 303, F1363–F1369 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. E.H. Landau, V.R. Jayanthi, B.M. Churchill, et al., Loss of elasticity in dysfunctional bladders: Urodynamic and histochemical correlation. J. Urol. 152, 702–705 (1994)

    Article  CAS  PubMed  Google Scholar 

  44. E. Compérat, A. Reitz, A. Delcourt, et al., Histologic features in the urinary bladder wall affected from neurogenic overactivity – A comparison of inflammation, oedema and fibrosis with and without injection of botulinum toxin type a. Eur. Urol. 50, 1058–1064 (2006)

    Article  PubMed  Google Scholar 

  45. P.S. Howard, D. Renfrow, N.M. Schechter, et al., Mast cell chymase is a possible mediator of neurogenic bladder fibrosis. Neurourol. Urodyn. 23, 374–382 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. C.M. Deveaud, E.J. Macarak, U. Kucich, et al., Molecular analysis of collagens in bladder fibrosis. J. Urol. 160, 1518–1527 (1998)

    Article  CAS  PubMed  Google Scholar 

  47. B. Liu, Y. Ding, P. Li, T. Wang, et al., MicroRNA-219c-5p regulates bladder fibrosis by targeting FN1. BMC Urol. 20, 193 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  48. J. Lincoln, R. Crowe, J. Bokor, et al., Adrenergic and cholinergic innervation of the smooth and striated muscle components of the urethra from patients with spinal cord injury. J. Urol. 135, 402–408 (1986)

    Article  CAS  PubMed  Google Scholar 

  49. R. Crowe, G. Burnstock, J.K. Light, Adrenergic innervation of the striated muscle of the intrinsic external urethral sphincter from patients with lower motor spinal cord lesion. J. Urol. 141, 47–49 (1989)

    Article  CAS  PubMed  Google Scholar 

  50. R. Crowe, G. Burnstock, J.K. Light, Spinal cord lesions at different levels affect either the adrenergic or vasoactive intestinal polypeptide-immunoreactive nerves in the human urethra. J. Urol. 140, 1412–1414 (1988)

    Article  CAS  PubMed  Google Scholar 

  51. P. Milner, R. Crowe, G. Burnstock, et al., Neuropeptide Y- and vasoactive intestinal polypeptide-containing nerves in the intrinsic external urethral sphincter in the areflexic bladder compared to detrusor-sphincter dyssynergia in patients with spinal cord injury. J. Urol. 138, 888–892 (1987)

    Article  CAS  PubMed  Google Scholar 

  52. M. Campolo, R. Siracusa, M. Cordaro, et al., The association of adelmidrol with sodium hyaluronate displays beneficial properties against bladder changes following spinal cord injury in mice. PLoS One 14, e0208730 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. K.M. Delnay, W.H. Stonehill, H. Goldman, et al., Bladder histological changes associated with chronic indwelling urinary catheter. J. Urol. 161, 1106–1108 (1999)

    Article  CAS  PubMed  Google Scholar 

  54. S. Vaidyanathan, P. Mansour, B.M. Soni, et al., The method of bladder drainage in spinal cord injury patients may influence the histological changes in the mucosa of neuropathic bladder – A hypothesis. BMC Urol. 30, 2–5 (2002)

    Google Scholar 

  55. B.M. Wall, R.R. Dmochowski, M. Malecha, et al., Inducible nitric oxide synthase in the bladder of spinal cord injured patients with a chronic indwelling urinary catheter. J. Urol. 165, 1457–1461 (2001)

    Article  CAS  PubMed  Google Scholar 

  56. S. Vaidyanathan, I.W. McDicken, A.J. Ikin, et al., A study of cytokeratin 20 immunostaining in the urothelium of neuropathic bladder of patients with spinal cord injury. BMC Urol. 29 (2002) 2.7

    Google Scholar 

  57. S. Vaidyanathan, I.W. McDicken, P. Mansour, et al., Detection of early squamous metaplasia in bladder biopsies of spinal cord injury patients by immunostaining for cytokeratin 14. Spinal Cord 41, 432–434 (2003)

    Article  CAS  PubMed  Google Scholar 

  58. B. Ozkan, O. Demirkesen, H. Durak, et al., Which factors predict upper urinary tract deterioration in overactive neurogenic bladder dysfunction? Urology 66, 99–104 (2005)

    Article  PubMed  Google Scholar 

  59. F. Di Tonno, S. Siracusano, S. Ciciliato, et al., Morphological changes on the intestinal mucosa in orthotopic neobladder. Urol. Int. 89, 67–70 (2012)

    Article  PubMed  Google Scholar 

  60. S. Cetinel, T. San, B. Cetinel, et al., Early histological changes of ileal mucosa after augmentation cystoplasty. Acta Histochem. 103, 335–346 (2001)

    Article  CAS  PubMed  Google Scholar 

  61. B. Carlén, R. Willén, W. Månsson, Mucosal ultrastructure of continent cecal reservoir for urine and its ileal nipple valve 2–9 years after construction. J. Urol. 143, 372–376 (1990)

    Article  PubMed  Google Scholar 

  62. J.N. Mumm, A. Osterman, M. Ruzicka, et al., Urinary frequency as a possibly overlooked symptom in COVID-19 patients: Does SARS-CoV-2 cause viral cystitis? Eur. Urol. 78, 624–628 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. S. Adapa, N.R. Aeddula, V.M. Konala, et al., COVID-19 and renal failure: Challenges in the delivery of renal replacement therapy. J. Clin. Med. Res. 12, 276–285 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  64. M.T. McMillan, X.Q. Pan, A.L. Smith, et al., Coronavirus-induced demyelination of neural pathways triggers neurogenic bladder overactivity in a mouse model of multiple sclerosis. Am. J. Physiol. Renal Physiol. 307, F612–F622 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. N.S. Lamarre, A.S. Braverman, A.P. Malykhina, et al., Alterations in nerve-evoked bladder contractions in a coronavirus-induced mouse model of multiple sclerosis. PLoS One 9, e109314 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  66. S. Lee, B. Nedumaran, J. Hypolite, et al., Differential neurodegenerative phenotypes are associated with heterogeneous voiding dysfunction in a coronavirus-induced model of multiple sclerosis. Sci. Rep. 9, 10869 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  67. D.E. Ribeiro, Á. Oliveira-Giacomelli, T. Glaser, et al., Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol. Psychiatry 26, 1044–1059 (2021)

    Article  CAS  PubMed  Google Scholar 

  68. J. Huang, M. Zheng, X. Tang, et al., Potential of SARS-CoV-2 to cause CNS infection: Biologic fundamental and clinical experience. Front. Neurol. 11, 659 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  69. J.J. Wyndaele, H. Maderbacher, D. Castro, et al., Chapter 17: Neurologic urinary and fecal incontinence, in Incontinence, ed. by P. Abrams, L. Cardozo, S. Khoury, A. Wein, vol. 2, (HEALTH Publications, Plymouth, 2004), pp. 1059–1162

    Google Scholar 

  70. J.J. Wyndaele, A. Kovindha, H. Maderbacher, et al., Chapter 10: Committee 10 on neurogenic bladder and bowel of the international consultation on incontinence 2008–2009, in Incontinence, ed. by P. Abrams, L. Cardozo, S. Khoury, A. Wein, (HEALTH Publications, Plymouth, 2009), pp. 793–960

    Google Scholar 

  71. C.R. Powell, Not all neurogenic bladders are the same: A proposal for a new neurogenic bladder classification system. Transl Androl Urol 5, 12–21 (2016)

    PubMed  PubMed Central  Google Scholar 

  72. A.J. Pavlakis, M.B. Siroky, J.S. Wheeler Jr., et al., Supplementation of cystometrography with simultaneous perineal floor and rectus abdominis electromyography. J. Urol. 129, 1179–1181 (1983)

    Article  CAS  PubMed  Google Scholar 

  73. J.C. Brocklehurst, K. Andrews, B. Richards, et al., Incidence and correlates of incontinence in stroke patients. J. Am. Geriatr. Soc. 33, 540–542 (1985)

    Article  CAS  PubMed  Google Scholar 

  74. D. Griffiths, Functional imaging of structures involved in neural control of the LUT, in Handb Clin Neurol 130, Neurology of Sexual and Bladder Disorders, ed. by D. B. Vodušek, F. Boller, (Elsevier, Amsterdam, 2015), pp. 121–133

    Chapter  Google Scholar 

  75. W.C. de Groat, D. Griffiths, N. Yoshimura, Neural control of the lower urinary tract. Compr. Physiol. 5, 327–396 (2015)

    PubMed  PubMed Central  Google Scholar 

  76. R. Sakakibara, Lower urinary tract dysfunction in patients with brain lesions, in Handb Clin Neurol 130, Neurology of Sexual and Bladder Disorders, ed. by D. B. Vodušek, F. Boller, (Elsevier, Amsterdam, 2015), pp. 269–287

    Chapter  Google Scholar 

  77. U. Mehnert, M. Nehiba, Neuro-urological dysfunction of the lower urinary tract in CNS diseases: Pathophysiology, epidemiology, and treatment options. Urologe A 51, 189–197 (2012)

    Article  CAS  PubMed  Google Scholar 

  78. R. Shrestha, O. Millington, J. Brewer, et al., Is central nervous system an immune-privileged site? Kathmandu Univ Med J (KUMJ). 11, 102–107 (2013)

    Article  CAS  PubMed  Google Scholar 

  79. K.J. Weld, R.R. Dmochowski, Association of level of injury and bladder behavior in patients with post-traumatic spinal cord injury. Urology 55, 490–494 (2000)

    Article  CAS  PubMed  Google Scholar 

  80. J.J. Wyndaele, Investigation of the afferent nerves of the lower urinary tract in patients with ‘complete’ and ‘incomplete’ spinal cord injury. Paraplegia 29, 490–494 (1991)

    CAS  PubMed  Google Scholar 

  81. J.J. Wyndaele, Correlation between clinical neurological data and urodynamic function in spinal cord injured patients. Spinal Cord 35(4), 213–216 (1997 Apr)

    Article  CAS  PubMed  Google Scholar 

  82. J.J. Wyndaele, M. Wyndaele, Combining different evaluations of sensation to assess the afferent innervation of the lower urinary tract after SCI. Spinal Cord 59, 201–206 (2021)

    Article  PubMed  Google Scholar 

  83. J.J. Wyndaele, M. Wyndaele, P.F.W.M. Rosier, Sensations reported during urodynamic bladder filling in spinal cord injury patients give additional important information. Int. Neurourol. J. (2021). https://doi.org/10.5213/inj.2142026.013. Epub ahead of print

  84. Y. Shinno, An electromyographic study of detrusor sphincter dyssynergia in the neurogenic vesical dysfunction. Part 1. Its type and further sub-typing based on the analysis of motor unit. Nihon Hinyokika Gakkai Zasshi. 80, 1436–1442 (1989)

    CAS  PubMed  Google Scholar 

  85. N. Liu, M. Zhou, F. Biering-Sørensen, et al., Iatrogenic urological triggers of autonomic dysreflexia: A systematic review. Spinal Cord 53, 500–509 (2015)

    Article  CAS  PubMed  Google Scholar 

  86. G. Molliqaj, M. Payer, K. Schaller, et al., Acute traumatic central cord syndrome: A comprehensive review. Neurochirurgie 60, 5–11 (2014)

    Article  CAS  PubMed  Google Scholar 

  87. R. Sakakibara, T. Hattori, M. Tojo, et al., The location of the paths subserving micturition: Studies in patients with cervical myelopathy. J. Auton. Nerv. Syst. 55, 165–168 (1995)

    Article  CAS  PubMed  Google Scholar 

  88. K. Yasuda, T. Yamanishi, T. Hattori, et al., Lower urinary tract dysfunction in the anterior spinal artery syndrome. J. Urol. 150, 1182–1184 (1993)

    Article  CAS  PubMed  Google Scholar 

  89. R. Sakakibara, T. Hattori, T. Uchiyama, et al., Urinary dysfunction in Brown-Sequard syndrome. Neurourol. Urodyn. 20, 661–667 (2001)

    Article  CAS  PubMed  Google Scholar 

  90. C.P. Smith, S.R. Kraus, K.G. Nickell, et al., Video urodynamic findings in men with the central cord syndrome. J. Urol. 164, 2014–2017 (2000)

    Article  CAS  PubMed  Google Scholar 

  91. M. Nath, J.S. Wheeler Jr., J.S. Walter, Urologic aspects of traumatic central cord syndrome. J. Am. Paraplegia Soc. 16, 160–164 (1993)

    Article  CAS  PubMed  Google Scholar 

  92. G. Scivoletto, E. Cosentino, B. Morganti, et al., Clinical prognostic factors for bladder function recovery of patients with spinal cord and cauda equina lesions. Disabil. Rehabil. 30, 330–337 (2008)

    Article  CAS  PubMed  Google Scholar 

  93. A. Gitelman, S. Hishmeh, B.N. Morelli, et al., Cauda equina syndrome: a comprehensive review. Am. J. Orthop. (Belle Mead N.J.) 37, 556–562 (2008)

    Google Scholar 

  94. S.V. Podnar, D.B. Vodusek, Lower urinary tract dysfunction in patients with peripheral nervous system lesions, in Handb Clin Neurol 130, Neurology of Sexual and Bladder Disorders, ed. by D. B. Vodušek, F. Boller, (Elsevier, Amsterdam, 2015), pp. 203–224

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Wyndaele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wyndaele, J.J. (2023). Pathology-Pathophysiology: Ultrastructure of the Neurogenic Bladder. In: Liao, L., Madersbacher, H. (eds) Handbook of Neurourology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1659-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1659-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1658-0

  • Online ISBN: 978-981-99-1659-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics