Skip to main content

The Integrated Physiology of the Lower Urinary Tract

  • Reference work entry
  • First Online:
Handbook of Neurourology
  • 432 Accesses

Abstract

The lower urinary tract (LUT) is comprised of the bladder and outflow tract whose functions are normally integrated by the central nervous system to allow urine storage and occasional volitional voiding. To achieve this bifunctionality, the bladder is compliant during storage, and the outflow tract maintains a high fluid resistance to prevent leakage. Conditions are reversed during voiding when the bladder generates a substantial intravesical (detrusor) pressure preceded by a fall of outflow resistance. In addition, reflux into the ureter is minimized by the vesicoureteric junction acting as a nonreturn valve. Control of bladder contractile activity is a key therapeutic goal to manage common benign LUT disorders, and consideration is given to methods, based on lessons from cardiology, that estimate changes to detrusor contractility that may be associated with over- or underactive bladder disorders. Many bladder disorders result from replacement of mucosal and detrusor tissues with connective tissue, and attention is given to the nature of fibrosis and therapeutic strategies to reverse this pathology. Contractions arising from the detrusor layer are generally evoked by efferent nerve activity but are overlain by spontaneous contractions, whose magnitude can be as large as evoked contractions in pathological conditions. The cellular physiology of these modes of contraction is considered, including potential roles for ubiquitous interstitial cells, as well as the interaction between the detrusor and mucosa. The outflow tract is considered as an interactive unit of trigone, urethral wall tissues, and striated muscle of the external urethral sphincter that together can achieve their function to offer high or low fluid resistances during the micturition cycle. Finally, the structure and function of the pelvic floor musculature is described, and it serves as an accessory continence structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.J. Sarnoff, Myocardial contractility as described by ventricular function curves; observations on Starling’s law of the heart. Physiol. Rev. 35, 107–122 (1955). https://doi.org/10.1152/physrev.1955.35.1.107

    Article  CAS  PubMed  Google Scholar 

  2. M. Santos-Pereira, A. Charrua, Understanding underactive bladder: a review of the contemporary literature. Porto Biomed. J. 5, 4.(e070 (2020). https://doi.org/10.1097/j.pbj.0000000000000070

    Article  Google Scholar 

  3. W. Grossman, H. Brooks, S. Meister, H. Sherman, L. Dexter, New technique for determining instantaneous myocardial force-velocity relations in the intact heart. Circ. Res. 28, 290–297 (1971). https://doi.org/10.1161/01.RES.28.2.290doi

    Article  CAS  PubMed  Google Scholar 

  4. C.H. Fry, A. Gammie, M.J. Drake, P. Abrams, D.G. Kitney, B. Vahabi, Estimation of bladder contractility from intravesical pressure-volume measurements. Neurourol. Urodyn. 36, 1009–1014 (2017). https://doi.org/10.1002/nau.23047

    Article  CAS  PubMed  Google Scholar 

  5. M. Imamura, A. Kanematsu, S. Yamamoto, Y. Kimura, I. Kanatani, N. Ito, et al., Basic fibroblast growth factor modulates proliferation and collagen expression in urinary bladder smooth muscle cells. Am. J. Phys. Renal Phys. 293, F1007–F1017 (2007). https://doi.org/10.1152/ajprenal.00107.2007

    Article  CAS  Google Scholar 

  6. M. Asgari, N. Latifi, H.K. Heris, H. Vali, L. Mongeau, In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci. Rep. 7, 1392 (2017). https://doi.org/10.1038/s41598-017-01476-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S.W.M. van den Borne, J. Diez, W.M. Blankesteijn, J. Verjans, L. Hofstra, J. Narula, Myocardial remodeling after infarction: The role of myofibroblasts. Nat. Rev. Cardiol. 7, 30–37 (2009). https://doi.org/10.1038/nrcardio.2009.199

    Article  PubMed  Google Scholar 

  8. C.Z. Altuntas, F. Daneshgari, K. Izgi, F. Bicer, A. Ozer, C. Sakalar, et al., Connective tissue and its growth factor CTGF distinguish the morphometric and molecular remodeling of the bladder in a model of neurogenic bladder. Am. J. Phys. Renal Phys. 303, F1363–F1369 (2012). https://doi.org/10.1152/ajprenal.00273.2012

    Article  CAS  Google Scholar 

  9. K. Zhang, X. Guo, W. Zhao, G. Niu, X. Mo, Q. Fu, Application of wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study. Int. J. Mol. Sci. 16, 27659–27676 (2015). https://doi.org/10.3390/ijms161126050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. L. Yang, R. Liu, X. Wang, D. He, Imbalance between matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) contributes to bladder compliance changes in rabbits with partial bladder outlet obstruction (PBOO). BJU Int. 112, E391–E397 (2013). https://doi.org/10.1111/j.1464-410X.2012.11740.x

    Article  CAS  PubMed  Google Scholar 

  11. X. Huang, Y. Gai, N. Yang, B. Lu, C.S. Samuel, V.J. Thannickal, et al., Relaxin regulates myofibroblast contractility and protects against lung fibrosis. Am. J. Pathol. 179, 2751–2765 (2011). https://doi.org/10.1016/j.ajpath.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. Martin, G. Romero, G. Salama, Cardioprotective actions of relaxin. Mol. Cell. Endocrinol. 487, 45–53 (2019). https://doi.org/10.1016/j.mce.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  13. Y. Ikeda, I.V. Zabbarova, L.A. Birder, P. Wipf, S.E. Getchell, P. Tyagi, et al., Relaxin-2 therapy reverses radiation-induced fibrosis and restores bladder function in mice. Neurourol. Urodyn. 37, 2441–2451 (2018). https://doi.org/10.1002/nau.23721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Sandner, M. Follmann, E. Becker-Pelster, M.G. Hahn, C. Meier, C. Freitas, et al., Soluble guanylate cyclase stimulators and activators: Past, present and future. Br. J. Pharmacol. (2021). https://doi.org/10.1111/bph.15698

  15. N. Johal, K.X. Cao, B. Xie, M. Millar, R. Davda, A. Ahmed, et al., Contractile and structural properties of detrusor from children with neurogenic lower urinary tract dysfunction. Biology 10, 863 (2021). https://doi.org/10.3390/biology10090863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C.H. Fry, L.A. Birder, R. Chess-Williams, B. Clarkson, B. Feng, G.F. Gebhart, et al., Neural control and cell biology, Chapter 2, in Incontinence, ed. P. Abrams, L. Cardozo, A. Wagg, A. Wein (ed), 7th edn. (2022)

    Google Scholar 

  17. M. Pakzad, Y. Ikeda, C. McCarthy, D.G. Kitney, R.I. Jabr, C.H. Fry, Contractile effects and receptor analysis of adenosine-receptors in human detrusor muscle from stable and neuropathic bladders. Naunyn Schmiedeberg's Arch. Pharmacol. 389, 921–929 (2016). https://doi.org/10.1007/s00210-016-1255-1

    Article  CAS  Google Scholar 

  18. M. Bayliss, C. Wu, D. Newgreen, A.R. Mundy, C.H. Fry, A quantitative study of atropine-resistant contractile responses in human detrusor smooth muscle, from stable, unstable and obstructed bladders. J. Urol. 162, 1833–1839 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. N. Johal, D.N. Wood, A.S. Wagg, P. Cuckow, C.H. Fry, Functional properties and connective tissue content of pediatric human detrusor muscle. Am. J. Phys. Renal Phys. 307, F1072–F1079 (2014). https://doi.org/10.1152/ajprenal.00380.2014

    Article  CAS  Google Scholar 

  20. C.J. McCarthy, Y. Ikeda, D. Skennerton, B. Chakrabarty, A.J. Kanai, R.I. Jabr, C.H. Fry, Characterisation of nerve-mediated ATP release from bladder detrusor muscle and its pathological implications. Br. J. Pharmacol. 176, 4720–4730 (2019). https://doi.org/10.1111/bph.14840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B. Chakrabarty, H. Ito, M. Ximenes, N. Nishikawa, B. Vahabi, A.J. Kanai, et al., Influence of sildenafil on the purinergic components of nerve-mediated and urothelial ATP release from the bladder of normal and spinal cord injured mice. Br. J. Pharmacol. 176, 2227–2237 (2019). https://doi.org/10.1111/bph.14669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K.E. Andersson, A. Arner, Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935–986 (2004). https://doi.org/10.1152/physrev.00038.2003

    Article  CAS  PubMed  Google Scholar 

  23. D.J. Sellers, T. Yamanishi, C.R. Chapple, C. Couldwell, K. Yasuda, R. Chess-Williams, M3 muscarinic receptors but not M2 mediate contraction of the porcine detrusor muscle in vitro. J. Auton. Pharmacol. 20, 171–176 (2000). https://doi.org/10.1046/j.1365-2680.2000.00181.x

    Article  CAS  PubMed  Google Scholar 

  24. E.P. Frazier, S.L. Peters, A.S. Braverman, M.R. Ruggieri, M.C. Michel, Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and beta-adrenoceptors. Naunyn Schmiedeberg's Arch. Pharmacol. 377, 449–462 (2008). https://doi.org/10.1007/s00210-007-0208-0

    Article  CAS  Google Scholar 

  25. C.H. Fry, R. Chess-Williams, H. Hashitani, A.J. Kanai, K. McCloskey, M. Takeda, B. Vahabi. Cell biology, Chapter 2, in Incontinence, ed. P. Abrams, L. Cardozo, A. Wagg, A. Wein, 6th edn. (2017)

    Google Scholar 

  26. M.M. Wani, M.I. Sheikh, T. Bhat, Z. Bhat, A. Bhat, Comparison of antimuscarinic drugs to beta adrenergic agonists in overactive bladder: a literary review. Curr. Urol. 15, 153–160 (2021). https://doi.org/10.1097/CU9.0000000000000037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. G.P. Sui, C. Wu, C.H. Fry, A description of Ca2+ channels in human detrusor smooth muscle. BJU Int. 92, 476–482 (2003). https://doi.org/10.1046/j.1464-410X.2003.04356.x

    Article  CAS  PubMed  Google Scholar 

  28. J. Malysz, G.V. Petkov, Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am. J. Phys. Renal Phys. 319, F257–F283 (2020). https://doi.org/10.1152/ajprenal.00048.2020

    Article  CAS  Google Scholar 

  29. G.P. Sui, S.R. Coppen, E. Dupont, S. Rothery, J. Gillespie, D. Newgreen, et al., Impedance measurements and connexin expression in human detrusor muscle from stable and unstable bladders. BJU Int. 92, 297–305 (2003). https://doi.org/10.1046/j.1464-410X.2003.04342.x

    Article  CAS  PubMed  Google Scholar 

  30. G.P. Sui, S. Rothery, E. Dupont, C.H. Fry, N.J. Severs, Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int. 90, 118–129 (2002). https://doi.org/10.1046/j.1464-410X.2002.02834.x

    Article  CAS  PubMed  Google Scholar 

  31. A. Roosen, S.N. Datta, R.A. Chowdhury, P.M. Patel, V. Kalsi, S. Elneil, et al., Suburothelial myofibroblasts in the human overactive bladder and the effect of botulinum neurotoxin type A treatment. Eur. Urol. 55, 1440–1448 (2009). https://doi.org/10.1016/j.eururo.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  32. T. Gevaert, E. Vanstreels, D. Daelemans, J. Franken, F. van der Aa, T. Roskams, et al., Identification of different phenotypes of interstitial cells in the upper and deep lamina propria of the human bladder dome. J. Urol. 192, 1555–1563 (2014). https://doi.org/10.1016/j.juro.2014.05.096

    Article  PubMed  Google Scholar 

  33. O.J. Wiseman, C.J. Fowler, D.N. Landon, The role of the human bladder lamina propria myofibroblast. BJU Int. 91, 89–93 (2003). https://doi.org/10.1046/j.1464-410X.2003.03802.x

    Article  CAS  PubMed  Google Scholar 

  34. H. Hashitani, Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis. J. Physiol. 576, 707–714 (2006). https://doi.org/10.1113/jphysiol.2006.116632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. T.J. Heppner, N.R. Tykocki, D. Hill-Eubanks, M.T. Nelson, Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling. J. Gen. Physiol. 147, 323–335 (2016). https://doi.org/10.1085/jgp.201511550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K.E. Andersson, K.D. McCloskey, Lamina propria: the functional center of the bladder? Neurourol. Urodyn. 33, 9–16 (2014). https://doi.org/10.1002/nau.22465

    Article  PubMed  Google Scholar 

  37. M.J. Drake, I.J. Harvey, J.I. Gillespie, W.A. Van Duyl, Localized contractions in the normal human bladder and in urinary urgency. BJU Int. 95, 1002–1005 (2005). https://doi.org/10.1111/j.1464-410X.2005.05455.x

    Article  PubMed  Google Scholar 

  38. B. Vahabi, M.J. Drake, Physiological and pathophysiological implications of micromotion activity in urinary bladder function. Acta Physiol. 213, 360–370 (2015). https://doi.org/10.1111/apha.12373

    Article  CAS  Google Scholar 

  39. N. Kushida, C.H. Fry, On the origin of spontaneous activity in the bladder. BJU Int. 117, 982–992 (2016). https://doi.org/10.1111/bju.13240

    Article  CAS  PubMed  Google Scholar 

  40. Y. Ikeda, C. Fry, F. Hayashi, D. Stolz, D. Griffiths, A. Kanai, Role of gap junctions in spontaneous activity of the rat bladder. Am. J. Phys. Renal Phys. 293, F1018–F1025 (2007). https://doi.org/10.1152/ajprenal.00183.2007

    Article  CAS  Google Scholar 

  41. A. Munoz, C.P. Smith, T.B. Boone, G.T. Somogyi, Overactive and underactive bladder dysfunction is reflected by alterations in urothelial ATP and NO release. Neurochem. Int. 58, 295–300 (2011). https://doi.org/10.1016/j.neuint.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  42. L.M. McLatchie, J.S. Young, C.H. Fry, Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations. Br. J. Pharmacol. 171, 3394–3403 (2014). https://doi.org/10.1111/bph.12682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A.T. Hanna-Mitchell, A.S. Wolf-Johnston, S.R. Barrick, A.J. Kanai, M.B. Chancellor, W.C. de Groat, L.A. Birder, Effect of botulinum toxin A on urothelial-release of ATP and expression of SNARE targets within the urothelium. Neurourol. Urodyn. 34, 79–84 (2015). https://doi.org/10.1002/nau.22508

    Article  CAS  PubMed  Google Scholar 

  44. C.E. Teixeira, L. Jin, F.B. Priviero, Z. Ying, R.C. Webb, Comparative pharmacological analysis of Rho-kinase inhibitors and identification of molecular components of Ca2+ sensitization in the rat lower urinary tract. Biochem. Pharmacol. 74, 647–658 (2007). https://doi.org/10.1016/j.bcp.2007.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. Roosen, C. Wu, G. Sui, R.A. Chowdhury, P.M. Patel, C.H. Fry, Characteristics of spontaneous activity in the bladder trigone. Eur. Urol. 56, 346–353 (2009). https://doi.org/10.1016/j.eururo.2008.06.048

    Article  CAS  PubMed  Google Scholar 

  46. A. Roosen, C.H. Fry, G. Sui, C. Wu, Adreno-muscarinic synergy in the bladder trigone: calcium-dependent and -independent mechanisms. Cell Calcium 45, 11–17 (2009). https://doi.org/10.1016/j.ceca.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  47. T. Yamanishi, C.R. Chapple, K. Yasuda, R. Chess-Williams, The role of M2 muscarinic receptor subtypes mediating contraction of the circular and longitudinal smooth muscle of the pig proximal urethra. J. Urol. 168, 308–314 (2002). https://doi.org/10.1016/S0022-5347(05)64913-0

    Article  CAS  PubMed  Google Scholar 

  48. J.E. Greenland, A.F. Brading, The in vivo and in vitro effects of hypoxia on pig urethral smooth muscle. Br. J. Urol. 79, 525–531 (1997). https://doi.org/10.1046/j.1464-410x.1997.00068.x

    Article  CAS  PubMed  Google Scholar 

  49. H. Hashitani, H. Suzuki, Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J. Physiol. 583, 505–519 (2007). https://doi.org/10.1113/jphysiol.2007.136697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Y. Hashimoto, T. Ushiki, T. Uchida, J. Yamada, T. Iwanaga, Scanning electron microscopic observation of apical sites of open-type paraneurons in the stomach, intestine and urethra. Arch. Histol. Cytol. 62, 181–189 (1999). https://doi.org/10.1679/aohc.62.181

    Article  CAS  PubMed  Google Scholar 

  51. K.B. Thor, W.C. de Groat, Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles. Am. J. Phys. Regul. Integr. Comp. Phys. 299, R416–R438 (2010). https://doi.org/10.1152/ajpregu.00111.2010

    Article  CAS  Google Scholar 

  52. C.H. Suzuki Bellucci, J. Wöllner, F. Gregorini, D. Birnböck, M. Kozomara, U. Mehnert, T.M. Kessler, External urethral sphincter pressure measurement: an accurate method for the diagnosis of detrusor external sphincter dyssynergia? PLoS One 7, e37996 (2012). https://doi.org/10.1371/journal.pone.0037996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. C.J. Fowler, R.S. Kirby, Abnormal electromyographic activity (decelerating bursts and complex repetitive discharges) in the striated muscle of the sphincter in 5 women with persisting urinary retention. Br. J. Urol. 57, 69–70 (1985). https://doi.org/10.1111/j.1464410x.1985.tb08988.x

    Article  Google Scholar 

  54. D.M. Morgan, W. Umek, K. Guire, H.K. Morgan, A. Garabrant, J.O. DeLancey, Urethral sphincter morphology and function with and without stress incontinence. J. Urol. 182, 203–209 (2009). https://doi.org/10.1016/j.juro.2009.02.129

    Article  PubMed  PubMed Central  Google Scholar 

  55. L. dell’Atti, Ultrasound evaluation of the striated urethral sphincter as a predictive parameter of urinary continence after radical prostatectomy. Arch. Ital. Urol. Androl. 87, 317–321 (2016). https://doi.org/10.4081/aiua.2015.4.317

    Article  PubMed  Google Scholar 

  56. D.L. Corona-Quintanilla, F. Castelan, V. Fajardo, J. Manzo, M. Martinez-Gomez, Temporal coordination of pelvic and perineal striated muscle activity during micturition in female rabbits. J. Urol. 181, 1452–1458 (2009). https://doi.org/10.1016/j.juro.2008.10.103

    Article  PubMed  Google Scholar 

  57. T. Arakawa, G. Murakami, F. Nakajima, A. Matsubara, A. Ohtsuka, T. Goto, et al., Morphologies of the interfaces between the levator ani muscle and pelvic viscera, with special reference to muscle insertion into the anorectum in elderly Japanese. Anat. Sci. Int. 79, 72–81 (2004). https://doi.org/10.1111/j.1447-073x.2004.00069.x

    Article  PubMed  Google Scholar 

  58. M. Helt, J.T. Benson, B. Russell, L. Brubaker, Levator ani muscle in women with genitourinary prolapse: indirect assessment by muscle histopathology. Neurourol. Urodyn. 15, 17–29 (1996). https://doi.org/10.1002/(SICI)1520-6777(1996)15:1<17::AID-NAU2>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Fry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fry, C.H., Jabr, R.I. (2023). The Integrated Physiology of the Lower Urinary Tract. In: Liao, L., Madersbacher, H. (eds) Handbook of Neurourology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1659-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1659-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1658-0

  • Online ISBN: 978-981-99-1659-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics