Skip to main content

Tissue-Engineering Bladder Augmentation

  • Reference work entry
  • First Online:
Handbook of Neurourology
  • 433 Accesses

Abstract

The accumulated knowledge of bladder histology and function as well as the progress in tissue-engineering technology has promoted the development of bladder regeneration. Tissue-engineering technology for bladder augmentation or regeneration holds strong potential in patients with neurogenic bladder, who develop renal impairment, by decreasing surgical time and reducing complications compared with conventional enterocystoplasty. Tissue-engineering technology could provide novel treatment options for bladder augmentation by regenerating epithelia and muscle using a variety of biomaterial scaffolds, along with autologous or allogeneic cells and growth factors. This approach might lead to the regeneration of partial bladder tissue or construction of a neo-bladder. This chapter reviewed the development for this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.D. Sievert, B. Amend, A. Stenzl, Tissue engineering for the lower urinary tract: A review of a state of the art approach. Eur. Urol. 52, 1580–1589 (2007). https://doi.org/10.1016/j.eururo.2007.08.051

    Article  PubMed  Google Scholar 

  2. M.E. Chua, W.A. Farhat, J.M. Ming, K.A. McCammon, Review of clinical experience on biomaterials and tissue engineering of urinary bladder. World J. Urol. 38, 2081–2093 (2020). https://doi.org/10.1007/s00345-019-02833-4

    Article  CAS  PubMed  Google Scholar 

  3. S.M. Biers, S.N. Venn, T.J. Greenwell, The past, present and future of augmentation cystoplasty. BJU Int. 109, 1280–1293 (2012). https://doi.org/10.1111/j.1464-410X.2011.10650.x

    Article  PubMed  Google Scholar 

  4. J.-L. Chen, H.-C. Kuo, Long-term outcomes of augmentation enterocystoplasty with an ileal segment in patients with spinal cord injury. J. Formos. Med. Assoc. 108, 475–480 (2009). https://doi.org/10.1016/s0929-6646(09)60095-4

    Article  PubMed  Google Scholar 

  5. S.M. Gilbert, T.W. Hensle, Metabolic consequences and long-term complications of enterocystoplasty in children: A review. J. Urol. 173, 1080–1086 (2005). https://doi.org/10.1097/01.ju.0000155248.57049.4e

    Article  PubMed  Google Scholar 

  6. A. Atala, S.B. Bauer, S. Soker, J.J. Yoo, A.B. Retik, Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246 (2006). https://doi.org/10.1016/s0140-6736(06)68438-9

    Article  PubMed  Google Scholar 

  7. A. Serrano-Aroca, C.D. Vera-Donoso, V. Moreno-Manzano, Bioengineering approaches for bladder regeneration. Int. J. Mol. Sci., 19 (2018). https://doi.org/10.3390/ijms19061796

  8. M. Pokrywczynska, J. Adamowicz, A.K. Sharma, T. Drewa, Human urinary bladder regeneration through tissue engineering - an analysis of 131 clinical cases. Exp. Biol. Med. (Maywood) 239, 264–271 (2014). https://doi.org/10.1177/1535370213517615

    Article  CAS  PubMed  Google Scholar 

  9. J.L. Pariente, B.S. Kim, A. Atala, In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J. Urol. 167, 1867–1871 (2002)

    Article  PubMed  Google Scholar 

  10. F. Zhao, L. Zhou, J. Liu, Z. Xu, W. Ping, H. Li, et al., Construction of a vascularized bladder with autologous adipose-derived stromal vascular fraction cells combined with bladder acellular matrix via tissue engineering. J. Tissue Eng. 10, 2041731419891256 (2019). https://doi.org/10.1177/2041731419891256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Wang, L. Liao, Histologic and functional outcomes of small intestine submucosa-regenerated bladder tissue. BMC Urol. 14, 69 (2014). https://doi.org/10.1186/1471-2490-14-69

    Article  PubMed  PubMed Central  Google Scholar 

  12. I.N. Simoes, P. Vale, S. Soker, A. Atala, D. Keller, R. Noiva, et al., Acellular urethra bioscaffold: Decellularization of whole urethras for tissue engineering applications. Sci. Rep. 7, 41934 (2017). https://doi.org/10.1038/srep41934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Ji, J. Zhou, T. Sun, K. Tang, Z. Xiong, Z. Ren, et al., Diverse preparation methods for small intestinal submucosa (SIS): Decellularization, components, and structure. J. Biomed. Mater. Res. A 107, 689–697 (2019). https://doi.org/10.1002/jbm.a.36582

    Article  CAS  PubMed  Google Scholar 

  14. S.H. Lu, M.S. Sacks, S.Y. Chung, D.C. Gloeckner, R. Pruchnic, J. Huard, et al., Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials 26, 443–449 (2005). https://doi.org/10.1016/j.biomaterials.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  15. Y. Zhang, D. Frimberger, E.Y. Cheng, H.K. Lin, B.P. Kropp, Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 98, 1100–1105 (2006). https://doi.org/10.1111/j.1464-410X.2006.06447.x

    Article  PubMed  Google Scholar 

  16. M. Probst, R. Dahiya, S. Carrier, E.A. Tanagho, Reproduction of functional smooth muscle tissue and partial bladder replacement. Br. J. Urol. 79, 505–515 (1997). https://doi.org/10.1046/j.1464-410x.1997.00103.x

    Article  CAS  PubMed  Google Scholar 

  17. D.L. Coutu, W. Mahfouz, O. Loutochin, J. Galipeau, J. Corcos, Tissue engineering of rat bladder using marrow-derived mesenchymal stem cells and bladder acellular matrix. PLoS One 9, e111966 (2014). https://doi.org/10.1371/journal.pone.0111966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.A. Burdick, G.D. Prestwich, Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011). https://doi.org/10.1002/adma.201003963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Axpe, M.L. Oyen, Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci., 17 (2016). https://doi.org/10.3390/ijms17121976

  20. S. Bouhout, S. Chabaud, S. Bolduc, Organ-specific matrix self-assembled by mesenchymal cells improves the normal urothelial differentiation in vitro. World J. Urol. 34, 121–130 (2016). https://doi.org/10.1007/s00345-015-1596-2

    Article  CAS  PubMed  Google Scholar 

  21. S. Bouhout, F. Goulet, S. Bolduc, A novel and faster method to obtain a differentiated 3-dimensional tissue engineered bladder. J. Urol. 194, 834–841 (2015). https://doi.org/10.1016/j.juro.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  22. T. Tateishi, G.P. Chen, Biodegradable polymer scaffold for tissue engineering. Key Eng. Mater. 288-289, 59–62 (2005). https://doi.org/10.4028/www.scientific.net/KEM.288-289.59

    Article  CAS  Google Scholar 

  23. C.K. Pillai, C.P. Sharma, Review paper: Absorbable polymeric surgical sutures: Chemistry, production, properties, biodegradability, and performance. J. Biomater. Appl. 25, 291–366 (2010). https://doi.org/10.1177/0885328210384890

    Article  CAS  PubMed  Google Scholar 

  24. G.S. Jack, R. Zhang, M. Lee, Y. Xu, B.M. Wu, L.V. Rodriguez, Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 30, 3259–3270 (2009). https://doi.org/10.1016/j.biomaterials.2009.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M.J. Jayo, D. Jain, B.J. Wagner, T.A. Bertram, Early cellular and stromal responses in regeneration versus repair of a mammalian bladder using autologous cell and biodegradable scaffold technologies. J. Urol. 180, 392–397 (2008). https://doi.org/10.1016/j.juro.2008.02.039

    Article  PubMed  Google Scholar 

  26. J.R. Mauney, G.M. Cannon, M.L. Lovett, E.M. Gong, D. Di Vizio, P. Gomez 3rd, et al., Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials 32, 808–818 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.051

    Article  CAS  PubMed  Google Scholar 

  27. L.A.J. Roelofs, P. de Jonge, E. Oosterwijk, D.M. Tiemessen, B.B.M. Kortmann, R.P.E. de Gier, et al., Bladder regeneration using multiple acellular scaffolds with growth factors in a bladder. Tissue Eng. Part A 24, 11–20 (2018). https://doi.org/10.1089/ten.TEA.2016.0356

    Article  CAS  PubMed  Google Scholar 

  28. D. Eberli, L. Freitas Filho, A. Atala, J.J. Yoo, Composite scaffolds for the engineering of hollow organs and tissues. Methods 47, 109–115 (2009). https://doi.org/10.1016/j.ymeth.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  29. E.M. Engelhardt, L.A. Micol, S. Houis, F.M. Wurm, J. Hilborn, J.A. Hubbell, et al., A collagen-poly(lactic acid-co-varepsilon-caprolactone) hybrid scaffold for bladder tissue regeneration. Biomaterials 32, 3969–3976 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  30. M. Horst, V. Milleret, S. Notzli, S. Madduri, T. Sulser, R. Gobet, et al., Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. J. Biomed. Mater. Res. A 102, 2116–2124 (2014). https://doi.org/10.1002/jbm.a.34889

    Article  CAS  PubMed  Google Scholar 

  31. N. Cao, L. Song, W. Liu, S. Fan, D. Jiang, J. Mu, et al., Prevascularized bladder acellular matrix hydrogel/silk fibroin composite scaffolds promote the regeneration of urethra in a rabbit model. Biomed. Mater. 14, 015002 (2018). https://doi.org/10.1088/1748-605X/aae5e2

    Article  PubMed  Google Scholar 

  32. C. Yao, M. Hedrick, G. Pareek, J. Renzulli, G. Haleblian, T.J. Webster, Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: An in vivo study. Int. J. Nanomedicine 8, 3285–3296 (2013). https://doi.org/10.2147/IJN.S44901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. H.K. Lin, S.V. Madihally, B. Palmer, D. Frimberger, K.M. Fung, B.P. Kropp, Biomatrices for bladder reconstruction. Adv. Drug Deliv. Rev. 82-83, 47–63 (2015). https://doi.org/10.1016/j.addr.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  34. S. Sivaraman, R. Ostendorff, B. Fleishman, J. Nagatomi, Tetronic(®)-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications. J. Biomater. Sci. Polym. Ed. 26, 196–210 (2015). https://doi.org/10.1080/09205063.2014.989482

    Article  CAS  PubMed  Google Scholar 

  35. M. Horst, S. Madduri, R. Gobet, T. Sulser, V. Milleret, H. Hall, et al., Engineering functional bladder tissues. J. Tissue Eng. Regen. Med. 7, 515–522 (2013). https://doi.org/10.1002/term.547

    Article  CAS  PubMed  Google Scholar 

  36. F. Wezel, J. Pearson, J. Southgate, Plasticity of in vitro-generated urothelial cells for functional tissue formation. Tissue Eng. Part A 20, 1358–1368 (2014). https://doi.org/10.1089/ten.TEA.2013.0394

    Article  CAS  PubMed  Google Scholar 

  37. D. Shukla, G.N. Box, R.A. Edwards, D.R. Tyson, Bone marrow stem cells for urologic tissue engineering. World J. Urol. 26, 341–349 (2008). https://doi.org/10.1007/s00345-008-0311-y

    Article  PubMed  Google Scholar 

  38. K. Deng, D.L. Lin, B. Hanzlicek, B. Balog, M.S. Penn, M.J. Kiedrowski, et al., Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am. J. Physiol. Renal Physiol. 308, F92–F100 (2015). https://doi.org/10.1152/ajprenal.00510.2014

    Article  CAS  PubMed  Google Scholar 

  39. Y. Wang, S. Zhou, R. Yang, Q. Zou, K. Zhang, Q. Tian, et al., Bioengineered bladder patches constructed from multilayered adipose-derived stem cell sheets for bladder regeneration. Acta Biomater. 85, 131–141 (2019). https://doi.org/10.1016/j.actbio.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  40. K. Stangel-Wojcikiewicz, D. Jarocha, M. Piwowar, R. Jach, T. Uhl, A. Basta, et al., Autologous muscle-derived cells for the treatment of female stress urinary incontinence: A 2-year follow-up of a polish investigation. Neurourol. Urodyn. 33, 324–330 (2014). https://doi.org/10.1002/nau.22404

    Article  PubMed  Google Scholar 

  41. Z. Wang, Y. Wen, Y.H. Li, Y. Wei, M. Green, P. Wani, et al., Smooth muscle precursor cells derived from human pluripotent stem cells for treatment of stress urinary incontinence. Stem Cells Dev. 25, 453–461 (2016). https://doi.org/10.1089/scd.2015.0343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. A. Bongso, C.Y. Fong, K. Gauthaman, Taking stem cells to the clinic: Major challenges. J. Cell. Biochem. 105, 1352–1360 (2008). https://doi.org/10.1002/jcb.21957

    Article  CAS  PubMed  Google Scholar 

  43. L.A. Roelofs, E. Oosterwijk, B.B. Kortmann, W.F. Daamen, D.M. Tiemessen, K.M. Brouwer, et al., Bladder regeneration using a smart acellular collagen scaffold with growth factors VEGF, FGF2 and HB-EGF. Tissue Eng. Part A 22, 83–92 (2016). https://doi.org/10.1089/ten.TEA.2015.0096

    Article  CAS  PubMed  Google Scholar 

  44. O.M. El-Taji, A.Q. Khattak, S.A. Hussain, Bladder reconstruction: The past, present and future. Oncol. Lett. 10, 3–10 (2015). https://doi.org/10.3892/ol.2015.3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. F. Zhang, L. Liao, Tissue engineered cystoplasty augmentation for treatment of neurogenic bladder using small intestinal submucosa: An exploratory study. J. Urol. 192, 544–550 (2014). https://doi.org/10.1016/j.juro.2014.01.116

    Article  PubMed  Google Scholar 

  46. P. Caione, R. Boldrini, A. Salerno, S.G. Nappo, Bladder augmentation using acellular collagen biomatrix: A pilot experience in exstrophic patients. Pediatr. Surg. Int. 28, 421–428 (2012). https://doi.org/10.1007/s00383-012-3063-0

    Article  PubMed  Google Scholar 

  47. B.P. Kropp, E.Y. Cheng, H.K. Lin, Y. Zhang, Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J. Urol. 172, 1710–1713 (2004). https://doi.org/10.1097/01.ju.0000139952.64753.27

    Article  PubMed  Google Scholar 

  48. F. Zhang, L. Liao, Long-term follow-up of neurogenic bladder patients after bladder augmentation with small intestinal submucosa. World J. Urol. 38, 2279–2288 (2020). https://doi.org/10.1007/s00345-019-03008-x

    Article  PubMed  Google Scholar 

  49. J. Adamowicz, M. Pokrywczynska, S.V. Van Breda, T. Kloskowski, T. Drewa, Concise review: Tissue engineering of urinary bladder; we still have a long way to go? Stem Cells Transl. Med. 6, 2033–2043 (2017). https://doi.org/10.1002/sctm.17-0101

    Article  PubMed  PubMed Central  Google Scholar 

  50. R.P. Dorin, H.G. Pohl, R.E. De Filippo, J.J. Yoo, A. Atala, Tubularized urethral replacement with unseeded matrices: What is the maximum distance for normal tissue regeneration? World J. Urol. 26, 323–326 (2008). https://doi.org/10.1007/s00345-008-0316-6

    Article  PubMed  Google Scholar 

  51. J.Y. Lai, P.Y. Chang, J.N. Lin, Bladder autoaugmentation using various biodegradable scaffolds seeded with autologous smooth muscle cells in a rabbit model. J. Pediatr. Surg. 40, 1869–1873 (2005). https://doi.org/10.1016/j.jpedsurg.2005.08.028

    Article  PubMed  Google Scholar 

  52. E.C. Novosel, C. Kleinhans, P.J. Kluger, Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300–311 (2011). https://doi.org/10.1016/j.addr.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  53. H. Bae, A.S. Puranik, R. Gauvin, F. Edalat, B. Carrillo-Conde, N.A. Peppas, et al., Building vascular networks. Sci. Transl. Med., 4:160ps23 (2012). https://doi.org/10.1126/scitranslmed.3003688

  54. L.E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A.L. Cristino, et al., Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14, 2202–2211 (2014). https://doi.org/10.1039/c4lc00030g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. Chabaud, A. Rousseau, T.L. Marcoux, S. Bolduc, Inexpensive production of near-native engineered stromas. J. Tissue Eng. Regen. Med. 11, 1377–1389 (2017). https://doi.org/10.1002/term.2036

    Article  CAS  PubMed  Google Scholar 

  56. J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008). https://doi.org/10.1016/j.smim.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  57. J. Adamowicz, T. Kowalczyk, T. Drewa, Tissue engineering of urinary bladder - current state of art and future perspectives. Cent. European J. Urol. 66, 202–206 (2013). https://doi.org/10.5173/ceju.2013.02.art23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. L. Liao, F. Zhang, G. Chen, Midterm outcomes of protection for upper urinary tract function by augmentation enterocystoplasty in patients with neurogenic bladder. Int. Urol. Nephrol. 46, 2117–2125 (2014). https://doi.org/10.1007/s11255-014-0782-2

    Article  CAS  PubMed  Google Scholar 

  59. T.A. Goldstein, C.J. Epstein, J. Schwartz, A. Krush, D.J. Lagalante, K.P. Mercadante, et al., Feasibility of bioprinting with a modified desktop 3D printer. Tissue Eng. Part C Methods 22, 1071–1076 (2016). https://doi.org/10.1089/ten.TEC.2016.0286

    Article  CAS  PubMed  Google Scholar 

  60. M. Persson, P.P. Lehenkari, L. Berglin, S. Turunen, M.A.J. Finnila, J. Risteli, et al., Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci. Rep. 8, 10457 (2018). https://doi.org/10.1038/s41598-018-28699-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. X. Cui, T. Boland, Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30, 6221–6227 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.056

    Article  CAS  PubMed  Google Scholar 

  62. D.B. Kolesky, R.L. Truby, A.S. Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014). https://doi.org/10.1002/adma.201305506

    Article  CAS  PubMed  Google Scholar 

  63. C. Di Bella, S. Duchi, C.D. O'Connell, R. Blanchard, C. Augustine, Z. Yue, et al., In situ handheld three-dimensional bioprinting for cartilage regeneration. J. Tissue Eng. Regen. Med. 12, 611–621 (2018). https://doi.org/10.1002/term.2476

    Article  CAS  PubMed  Google Scholar 

  64. M. Albanna, K.W. Binder, S.V. Murphy, J. Kim, S.A. Qasem, W. Zhao, et al., In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci. Rep. 9, 1856 (2019). https://doi.org/10.1038/s41598-018-38366-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. W. Zhao, T. Xu, Preliminary engineering for in situ in vivo bioprinting: A novel micro bioprinting platform for in situ in vivo bioprinting at a gastric wound site. Biofabrication 12, 045020 (2020). https://doi.org/10.1088/1758-5090/aba4ff

    Article  CAS  PubMed  Google Scholar 

  66. G.R. Campbell, G. Turnbull, L. Xiang, M. Haines, S. Armstrong, B.E. Rolfe, et al., The peritoneal cavity as a bioreactor for tissue engineering visceral organs: Bladder, uterus and vas deferens. J. Tissue Eng. Regen. Med. 2, 50–60 (2008). https://doi.org/10.1002/term.66

    Article  CAS  PubMed  Google Scholar 

  67. A.M. Kajbafzadeh, S.A. Esfahani, S.S. Talab, A. Elmi, M. Monajemzadeh, In-vivo autologous bladder muscular wall regeneration: Application of tissue-engineered pericardium in a model of bladder as a bioreactor. J. Pediatr. Urol. 7, 317–323 (2011). https://doi.org/10.1016/j.jpurol.2011.02.014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liao, L. (2023). Tissue-Engineering Bladder Augmentation. In: Liao, L., Madersbacher, H. (eds) Handbook of Neurourology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1659-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1659-7_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1658-0

  • Online ISBN: 978-981-99-1659-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics