Skip to main content

Peripheral Neural Control of the Lower Urinary Tract

  • Reference work entry
  • First Online:
Handbook of Neurourology
  • 437 Accesses

Abstract

Storage and elimination of urine are dependent upon the coordinated activity of two functional units in the lower urinary tract, the urinary bladder, and its outlet (the urethral sphincter and the urethra). These structures are innervated by three sets of peripheral nerves: sacral parasympathetic (pelvic nerves), thoracolumbar sympathetic (hypogastric nerves and sympathetic chain), and sacral somatic nerves (pudendal nerves).

The pelvic nerve afferents monitor the volume of the bladder and the amplitude of the bladder contraction. These afferents are small myelinated (Aδ) and unmyelinated (C) fibers, which convey information from receptors in the bladder wall to second-order neurons in the spinal cord.

During the storage phase, thoracolumbar sympathetic efferent pathways elicit various effects including (1) inhibition of detrusor muscle through stimulation of β3-adrenoceptors and (2) excitation of the bladder base and the urethra through stimulation of α1-adrenoceptors. Sacral somatic efferent pathways originated from Onuf’s nucleus, sphincter motoneurons, send their axons through the pudendal nerves and excite sphincter muscles via the release of acetylcholine.

When the switch turns from the storage to the voiding phase, both thoracolumbar sympathetic and sacral somatic efferent pathways are inhibited, and the sacral parasympathetic pathways are activated, which provides the major excitatory input to bladder smooth muscle via the release of cholinergic (acetylcholine) and non-adrenergic, noncholinergic transmitters (ATP and others) and inhibits urethral smooth muscle via the release of nitric oxide (NO) through the pelvic nerves.

Afferent sensitivity to mechanical and chemical stimuli in the bladder and the urethra is modulated by various sensory receptors (TRP ion channels, CB receptors, etc.) located in the urothelial cells, detrusor smooth muscle cells, and sensory nerves and mediators (NO, ATP, ACh, etc.) released from the urothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Inskip, L.M. Ramer, M.S. Ramer, A.V. Krassioukov, Autonomic assessment of animals with spinal cord injury: Tools, techniques and translation. Spinal Cord 47(1), 2–35 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. C.J. Fowler, D. Griffiths, W.C. de Groat, The neural control of micturition. Nat. Rev. Neurosci. 9, 453–466 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C.H. Fry, A.J. Kanai, A. Roosen, M. Takeda, D.N. Wood, Cell biology, in Incontinence, ed. by P. Abrams, L. Cardozo, S. Khoury, A. Wein, 4th edn., (Health Publications, Ltd, Paris, 2009), pp. 113–166

    Google Scholar 

  4. J.S. Dixon, P.Y.P. Jen, J.A. Gosling, The distribution of vesicular acetylcholine transporter in the human male genitourinary organs and its co-localization with neuropeptide Y and nitric oxide synthase. Neurourol. Urodyn. 19, 185–194 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. S. Sigala, G. Mirabella, A. Peroni, G. Pezzotti, C. Simeone, P. Spano, et al., Differential gene expression of cholinergic muscarinic receptor subtypes in male and female normal human urinary bladder. Urology 60, 719–725 (2002)

    Article  PubMed  Google Scholar 

  6. R.M. Eglen, S. Hegde, N. Watson, Muscarinic receptor subtypes and smooth muscle function. Pharmacol. Rev. 48, 31–565 (1996)

    Google Scholar 

  7. K.E. Andersson, A.J. Wein, Pharmacology of the lower urinary tract: Basis for current and future treatments of urinary incontinence. Pharmacol. Rev. 56, 581–631 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. M.A. Pontari, A.S. Braverman, M.R. Ruggieri Sr., The M2 muscarinic receptor mediates in vitro bladder contractions from patients with neurogenic bladder dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, 874–880 (2004)

    Article  Google Scholar 

  9. M. Goepel, A. Wittmann, H. Rubben, M.C. Michel, Comparison of adrenoceptor subtype expression in porcine and human bladder and prostate. Urol. Res. 25, 199–206 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Igawa, Y. Yamazaki, H. Takeda, K. Hayakawa, M. Akahane, Y. Ajisawa, et al., Functional and molecular biological evidence for a possible β3-adrenoceptor in the human detrusor muscle. Br. J. Pharmacol. 126, 819–825 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W.C. de Groat, N. Yoshimura, Afferent nerve regulation of bladder function in health and disease. Handb. Exp. Pharmacol. 194, 91–138 (2009)

    Article  Google Scholar 

  12. L. Birder, B. Blok, G. Burnstock, F. Cruz, D. Griffiths, H.C. Kuo, et al., Neural control, in Incontinence, ed. by P. Abrams, L. Cardozo, A. Wagg, A. Wein, 6th edn., (Health Publications, Ltd, Paris, 2016), pp. 275–375

    Google Scholar 

  13. A.E. Snellings, P.B. Yoo, W.M. Grill, Urethral flow-responsive afferents in the cat sacral dorsal root ganglia. Neurosci. Lett. 516, 34–38 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Birder, K.E. Andersson, Urothelial signaling. Physiol. Rev. 93, 653–680 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. Vergnolle, Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterol. Motil. 1, 73–80 (2008)

    Article  Google Scholar 

  16. G. Burnstock, B. Dumsday, A. Smythe, Atropine resistant excitation of the urinary bladder: The possibility of transmission via nerves releasing a purine nucleotide. Br. J. Pharmacol. 44, 451–461 (1972)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L.A. Birder, A.S. Wolf-Johnston, Y. Sun, T.C. Chai, Alteration in TRPV1 and muscarinic M3 receptor expression and function in idiopathic overactive bladder urothelial cells. Acta Physiol (Oxf.) 207, 123–129 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. D.A. Cockayne, S.G. Hamilton, Q.M. Zhu, P.M. Dunn, Y. Zhong, S. Novakovic, et al., Urinary bladder hyporeflexia and reduced pain-related behavior in P2X3-deficient mice. Nature 407, 1011–1015 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Moldwin R, Kitt M, Mangel J, Beyer R, Hanno P, Butera P, et al. A phase 2 study in women with interstitial cystitis/bladder pain syndrome (IC/BPS) of the novel p2x3 antagonist AF219. Paper presented at the 45th Annual meeting of international continence society. Montreal, 6–9 October 2015

    Google Scholar 

  20. L.A. Birder, M.L. Nealen, S. Kiss, W.C. de Groat, M.J. Caterina, E. Wang, et al., Beta-adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J. Neurosci. 22, 8063–8070 (2002a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J.I. Gillespie, M. Markerink-van Ittersum, J. de Vente, Endogenous nitric oxide/cGMP signalling in the Guinea pig bladder: Evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res. 325, 325–332 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. N. Aizawa, Y. Igawa, O. Nishizawa, J.J. Wyndaele, Effects of nitric oxide on the primary bladder afferent activities of the rat with and without intravesical acrolein treatment. Eur. Urol. 59, 264–271 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Rahnama’I MS, S. Uckert, R. Hohnen, G.A. van Koeveringe, The role of phosphodiesterases in bladder pathophysiology. Nat. Rev. Urol. 10, 414–424 (2013)

    Article  PubMed  Google Scholar 

  24. M.C. Truss, C.G. Stief, S. Uckert, A.J. Becker, J. Wefer, D. Schultheiss, et al., Phosphodiesterase 1 inhibition in the treatment of lower urinary tract dysfunction: From bench to bedside. World J. Urol. 19, 344–350 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. T. Minagawa, N. Aizawa, Y. Igawa, J.J. Wyndaele, Inhibitory effects of phosphodiesterase 5 inhibitor, tadalafil, on mechanosensitive bladder afferent nerve activities of the rat, and on acrolein-induced hyperactivity of these nerves. BJU Int. 110, 259–266 (2012)

    Article  Google Scholar 

  26. B. Nilius, A. Szallasi, Transient receptor potential channels as drug targets: From the science of basic research to the art of medicine. Pharmacol. Rev. 66(3), 676–814 (2014). https://doi.org/10.1124/pr.113.008268. PMID: 24951385

  27. Y. Deruyver, T. Voets, D. De Ridder, W. Everaerts, Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): Myth or reality? BJU Int. 115, 686–697 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. K.E. Andersson, TRP channels as lower urinary tract sensory targets. Med Sci (Basel). 7(5), 67 (2019). https://doi.org/10.3390/medsci7050067

    Article  CAS  PubMed  Google Scholar 

  29. K.E. Andersson, Agents in early development for treatment of bladder dysfunction – Promise of drugs acting at TRP channels? Expert Opin. Investig. Drugs 28(9), 749–755 (2019 Sep). https://doi.org/10.1080/13543784.2019.1654994

    Article  CAS  PubMed  Google Scholar 

  30. L.A. Birder, Y. Nakamura, S. Kiss, M.L. Nealen, S.R. Barrick, A.J. Kanai, et al., Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat. Neurosci. 5, 856–860 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. D. Daly, W. Rong, R. Chess-Williams, C. Chapple, D. Grundy, Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J. Physiol. 583, 663–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. G.C. Mingin, T.J. Heppner, N.R. Tykocki, C.S. Erickson, M.A. Vizzard, M.T. Nelson, Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309(6), R629–R638 (2015). https://doi.org/10.1152/ajpregu.00013.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. H.Y. Zhang, J.F. Chu, P. Li, N. Li, Z.H. Lv, Expression and diagnosis of transient receptor potential vanilloid1 in urothelium of patients with overactive bladder. J. Biol. Regul. Homeost. Agents 29(4), 875–879 (2015) PMID: 26753651

    CAS  PubMed  Google Scholar 

  34. P. Round, A. Priestley, J. Robinson, An investigation of the safety and pharmacokinetics of the novel TRPV1 antagonist XEN-D0501 in healthy subjects. Br. J. Clin. Pharmacol. 72(6), 921–931 (2011). https://doi.org/10.1111/j.1365-2125.2011.04040.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. W. Brown, R.L. Leff, A. Griffin, S. Hossack, R. Aubray, P. Walker, D.A. Chiche, Safety, pharmacokinetics, and pharmacodynamics study in healthy subjects of oral NEO6860, a modality selective transient receptor potential vanilloid subtype 1 antagonist. J. Pain 18(6), 726–738 (2017 Jun). https://doi.org/10.1016/j.jpain.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  36. T. Streng, H.E. Axelsson, P. Hedlund, D.A. Andersson, S.E. Jordt, S. Bevan, K.E. Andersson, E.D. Högestätt, P.M. Zygmunt, Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur. Urol. 53(2), 391–399 (2008 Feb). https://doi.org/10.1016/j.eururo.2007.10.024

    Article  CAS  PubMed  Google Scholar 

  37. E.L. Andrade, S. Forner, A.F. Bento, D.F. Leite, M.A. Dias, P.C. Leal, et al., TRPA1 receptor modulation attenuates bladder overactivity induced by spinal cord injury. Am. J. Physiol. Renal Physiol. 300, 1223–1234 (2011)

    Article  Google Scholar 

  38. J.J. Deberry, E.S. Schwartz, B.M. Davis, TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain 155, 1280–1287 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. T. Gevaert, J. Vriens, A. Segal, W. Everaerts, T. Roskams, K. Talavera, et al., Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest. 117, 3453–3462 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D.A. Janssen, J.G. Hoenderop, K.C. Jansen, A.W. Kemp, J.P. Heesakkers, J.A. Schalken, The mechanoreceptor TRPV4 is localized in adherence junctions of the human bladder urothelium: A morphological study. J. Urol. 186, 1121–1127 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. T. Mochizuki, T. Sokabe, I. Araki, K. Fujishita, K. Shibasaki, K. Uchida, et al., The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J. Biol. Chem. 284, 21257–21264 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K.S. Thorneloe, A.C. Sulpizio, Z. Lin, D.J. Figueroa, A.K. Clouse, G. P. McCafferty, et al., N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide(GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J. Pharmacol. Exp. Ther. 326, 432–442 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. N. Aizawa, J.J. Wyndaele, Y. Homma, Y. Igawa, Effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat. Neurourol. Urodyn. 31, 148–155 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. W. Everaerts, X. Zhen, D. Ghosh, J. Vriens, T. Gevaert, J.P. Gilbert, et al., Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl. Acad. Sci. U. S. A. 107, 19084–19089 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. Charrua, C.D. Cruz, D. Jansen, B. Rozenberg, J. Heesakkers, F. Cruz, Co-administration of transient receptor potential vanilloid 4 (TRPV4) and TRPV1 antagonists potentiate the effect of each drug in a rat model of cystitis. BJU Int. 115, 452–460 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. K.S. Thorneloe, M. Cheung, W. Bao, H. Alsaid, S. Lenhard, M.Y. Jian, et al., An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci. Transl. Med. 4, 159–148 (2012)

    Article  Google Scholar 

  47. N. Goyal, P. Skrdla, R. Schroyer, S. Kumar, D. Fernando, A. Oughton, N. Norton, D.L. Sprecher, J. Cheriyan, Clinical pharmacokinetics, safety, and tolerability of a novel, first-in-class TRPV4 ion channel inhibitor, GSK2798745, in healthy and heart failure subjects. Am. J. Cardiovasc. Drugs 19(3), 335–342 (2019 Jun). https://doi.org/10.1007/s40256-018-00320-6

    Article  CAS  PubMed  Google Scholar 

  48. G.M. Stewart, B.D. Johnson, D.L. Sprecher, Y.N.V. Reddy, M. Obokata, S. Goldsmith, B. Bart, A. Oughton, C. Fillmore, D.J. Behm, B.A. Borlaug, Targeting pulmonary capillary permeability to reduce lung congestion in heart failure: A randomized, controlled pilot trial. Eur. J. Heart Fail. 22(9), 1641–1645 (2020 Sep). https://doi.org/10.1002/ejhf.1809

    Article  CAS  PubMed  Google Scholar 

  49. G. Mukerji, Y. Yiangou, S.L. Corcoran, I.S. Selmer, G.D. Smith, C.D. Benham, et al., Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol. 6, 6 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  50. T. Hayashi, T. Kondo, M. Ishimatsu, S. Yamada, K. Nakamura, K. Matsuoka, et al., Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder. Neurosci. Res. 65, 245–251 (2009)

    Article  CAS  PubMed  Google Scholar 

  51. E.S. Lashinger, M.S. Steiginga, J.P. Hieble, L.A. Leon, S.D. Gardner, R. Nagilla, et al., AMTB, a TRPM8 channel blocker: Evidence in rats for activity in overactive bladder and painful bladder syndrome. Am. J. Physiol. Renal Physiol. 295, 803–810 (2008)

    Article  Google Scholar 

  52. Z. Lei, O. Ishizuka, T. Imamura, W. Noguchi, T. Yamagishi, H. Yokoyama, et al., Functional roles of transient receptor potential melastatin 8 (TRPM8) channels in the cold stress-induced detrusor overactivity pathways in conscious rats. Neurourol. Urodyn. 32, 500–504 (2013)

    Article  CAS  PubMed  Google Scholar 

  53. H. Ito, N. Aizawa, R. Sugiyama, S. Watanabe, N. Takahashi, M. Tajimi, et al., Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int. 117, 484–494 (2016)

    Article  CAS  PubMed  Google Scholar 

  54. N. Aizawa, Y. Fujimori, J.I. Kobayashi, O. Nakanishi, H. Hirasawa, H. Kume, Y. Homma, Y. Igawa, KPR-2579, a novel TRPM8 antagonist, inhibits acetic acid-induced bladder afferent hyperactivity in rats. Neurourol. Urodyn. 37(5), 1633–1640 (2018 Jun). https://doi.org/10.1002/nau.23532

    Article  CAS  PubMed  Google Scholar 

  55. O. Nakanishi, Y. Fujimori, N. Aizawa, T. Hayashi, A. Matsuzawa, J.I. Kobayashi, H. Hirasawa, Y. Mutai, F. Tanada, Y. Igawa, KPR-5714, a novel transient receptor potential melastatin 8 antagonist, improves overactive bladder via inhibition of bladder afferent hyperactivity in rats. J. Pharmacol. Exp. Ther. 373(2), 239–247 (2020 May). https://doi.org/10.1124/jpet.119.263616

    Article  CAS  PubMed  Google Scholar 

  56. N. Aizawa, Y. Fujimori, O. Nakanishi, T. Hayashi, Y. Goi, J.I. Kobayashi, T. Fujita, Efficacy of the combination of KPR-5714, a novel transient receptor potential melastatin 8 (TRPM8) antagonist, and β3-adrenoceptor agonist or anticholinergic agent on bladder dysfunction in rats with bladder overactivity. Eur. J. Pharmacol. 15(899), 173995 (2021). https://doi.org/10.1016/j.ejphar.2021.173995

    Article  CAS  Google Scholar 

  57. W.J. Winchester, K. Gore, S. Glatt, W. Petit, J.C. Gardiner, K. Conlon, M. Postlethwaite, P.P. Saintot, S. Roberts, J.R. Gosset, T. Matsuura, M.D. Andrews, P.A. Glossop, M.J. Palmer, N. Clear, S. Collins, K. Beaumont, D.S. Reynolds, Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J. Pharmacol. Exp. Ther. 351(2), 259–269 (2014 Nov). https://doi.org/10.1124/jpet.114.216010

    Article  CAS  PubMed  Google Scholar 

  58. K.L. Hristov, A.C. Smith, S.P. Parajuli, J. Malysz, E.S. Rovner, G.V. Petkov, Novel regulatory mechanism in human urinary bladder: Central role of transient receptor potential melastatin 4 channels in detrusor smooth muscle function. Am. J. Physiol. Cell Physiol. 310(7), C600–C611 (2016). https://doi.org/10.1152/ajpcell.00270.2015

    Article  PubMed  PubMed Central  Google Scholar 

  59. F. Alom, H. Matsuyama, H. Nagano, S. Fujikawa, Y. Tanahashi, T. Unno, Involvement of transient receptor potential melastatin 4 channels in the resting membrane potential setting and cholinergic contractile responses in mouse detrusor and ileal smooth muscles. J. Vet. Med. Sci. 81(2), 217–228 (2019). https://doi.org/10.1292/jvms.18-0631

    Article  CAS  PubMed  Google Scholar 

  60. F.A. Kullmann, J.M. Beckel, B. McDonnell, C. Gauthier, A.M. Lynn, A. Wolf-Johnston, A. Kanai, I.V. Zabbarova, Y. Ikeda, W.C. de Groat, L.A. Birder, Involvement of TRPM4 in detrusor overactivity following spinal cord transection in mice. Naunyn Schmiedeberg’s Arch. Pharmacol. 391(11), 1191–1202 (2018). https://doi.org/10.1007/s00210-018-1542-0

    Article  CAS  Google Scholar 

  61. U. Park, N. Vastani, Y. Guan, S.N. Raja, M. Koltzenburg, M.J. Caterina, TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci. 31(32), 11425–11436 (2011). https://doi.org/10.1523/JNEUROSCI.1384-09.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. X. Dong, H. Nakagomi, T. Miyamoto, T. Ihara, S. Kira, N. Sawada, T. Mitsui, M. Takeda, Tadalafil attenuates hypotonicity-induced ca<sup>2+</sup> influx via TRPV2 and TRPV4 in primary rat bladder urothelial cell cultures. Neurourol. Urodyn. 37(5), 1541–1548 (2018). https://doi.org/10.1002/nau.23423

  63. Y. Homma, A. Nomiya, M. Tagaya, T. Oyama, K. Takagaki, H. Nishimatsu, Y. Igawa, Increased mRNA expression of genes involved in pronociceptive inflammatory reactions in bladder tissue of interstitial cystitis. J. Urol. 190(5), 1925–1931 (2013). https://doi.org/10.1016/j.juro.2013.05.049

    Article  CAS  PubMed  Google Scholar 

  64. R.B. Kavia, D. De Ridder, C.S. Constantinescu, C.G. Stott, C.J. Fowler, Randomized controlled trial of Sativex to treat detrusor overactivity in multiple sclerosis. Mult. Scler. 16, 1349–1359 (2010)

    Article  CAS  PubMed  Google Scholar 

  65. V. Tyagi, B.J. Philips, R. Su, M.C. Smaldone, V.L. Erickson, M.B. Chancellor, et al., Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J. Urol. 181, 1932–1938 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. G. Mukerji, Y. Yiangou, S.K. Agarwal, P. Anand, Increased cannabinoid receptor 1-immunoreactive nerve fibers in overactive and painful bladder disorders and their correlation with symptoms. Urology 75, 1514 (2010)

    Article  Google Scholar 

  67. C. Gratzke, T. Streng, A. Park, G. Christ, C.G. Stief, P. Hedlund, et al., Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J. Urol. 181, 1939–1948 (2009)

    Article  CAS  PubMed  Google Scholar 

  68. N. Aizawa, P. Hedlund, C. Füllhase, H. Ito, Y. Homma, Y. Igawa, Inhibition of peripheral FAAH depresses activities of bladder mechanosensitive nerve fibers of the rat. J. Urol. 192, 956–963 (2014)

    Article  CAS  PubMed  Google Scholar 

  69. N. Aizawa, G. Gandaglia, P. Hedlund, T. Fujimura, H. Fukuhara, F. Montorsi, et al., URB937, a peripherally restricted inhibitor for fatty acid amide hydrolase, reduces prostaglandin E2-induced bladder overactivity and hyperactivity of bladder mechanoafferent nerve fibres in rats. BJU Int. 117, 821–828 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Igawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Igawa, Y. (2023). Peripheral Neural Control of the Lower Urinary Tract. In: Liao, L., Madersbacher, H. (eds) Handbook of Neurourology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1659-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1659-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1658-0

  • Online ISBN: 978-981-99-1659-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics