Antennas in Partial Discharge Sensing System

  • Guillermo RoblesEmail author
  • Ricardo Albarracín
  • José Luis Vázquez
Living reference work entry


The exponential growing demand of electricity has stimulated the manufacture of electric equipment with high rated powers withstanding tens and hundreds of kilovolts. These devices have to be insulated to ensure a safe and reliable service while their size and cost are reduced. Unfortunately, insulations deteriorate over time by being in operation under load and exposed to harsh environments that can degrade their behavior and lead to unexpected equipment outages and failures. The continuous monitoring of these assets is paramount in the operation of electric power systems, and one of the most popular methods to evaluate the ageing is the detection of partial discharges. Partial discharges are ionization processes that take place in voids filled with gas or oil inside the insulation, in dielectric surfaces, and in the proximity of sharp metallic objects. The chemical and physical structure of the insulation is changed, and eventually weakened, by the continuous action of the discharges. Then, their apparition can be directly a signal of problems in the insulation, but they can also be the consequence of other degradation processes. Partial discharges can be measured with a wide range of detectors including inductive, capacitive, acoustic, and light sensors. Because partial discharges occur in extremely short times, well below 1 ns, the radiofrequency measurement of the phenomenon in the HF, VHF, and UHF bands is also part of the unconventional methods used for their detection. EM sensors or antennas have the ability of performing a complete study on the measurement of partial discharges. They can detect pulses, localize the partial discharge site, and, to some extent, classify the type of partial discharge online. However, one of the most important challenges when using antennas in the diagnostic of insulations is the difficulty of relating the RF emissions to the severity of the PD. Another determent in the wide application of antennas as partial discharge detectors is the sample rate needed to obtain information from the signals in the time and frequency domains. The chapter also explores the most common configurations of antennas used in the detection of partial discharges as well as how they are installed and used in different electrical machines.


Partial discharges Ultrahigh-frequency detection techniques Electrical insulation diagnosis Sensors Instrumentation Electrical measurements Ultrahigh-frequency measurements Antenna parametrization Electrical maintenance 


  1. A2.27, Cigre W (2008) Technical Brochure 343Google Scholar
  2. Albarracin R, Robles G, Martinez-Tarifa J, Ardila-Rey J (2015) Separation of sources in radiofrequency measurements of partial discharges using time-power ratio maps. ISA Trans
  3. Albarracín-Sánchez R (2014) Measurement of partial discharges in radiofrequency (Spanish). Doctoral thesis, Universidad Carlos III de Madrid, SpainGoogle Scholar
  4. Argüeso M, Robles G, Sanz J (2005) Implementation of a Rogowski coil for the measurement of partial discharges. Rev Sci Instrum 76(6):65107–65113Google Scholar
  5. Ari N, Blumer W (1987) Transient electromagnetic fields due to switching operations in electric power systems. IEEE Trans Electromagn Compat EMC-29(3):233–237CrossRefGoogle Scholar
  6. ASTM1868 (2013) Standard test method for detection and measurement of partial discharge (Corona) pulses in evaluation of insulation systems ASTM International, West Conshohocken, PA
  7. Ayob MF, Ramli NH (2014) Meandered with parasite patch antenna for partial discharge detection applications. Int J Electron Comput Commun Technol 4(2):18–21Google Scholar
  8. Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, New YorkGoogle Scholar
  9. Bårmann P, Kröll S, Sunesson A (1996) Spectroscopic measurements of streamer filaments in electric breakdown in a dielectric liquid. J Phys D Appl Phys 29(5):1188CrossRefGoogle Scholar
  10. Bartnikas R (2002) Partial discharges. Their mechanism, detection and measurement. IEEE Trans Dielectr Electr Insul 9(5):763–808CrossRefGoogle Scholar
  11. Bartnikas R, McMahon E, ASTM (1979) Corona measurement and interpretation. ASTM special technical publication. ASTM Committee D-9 on Electrical Insulating MaterialsGoogle Scholar
  12. Boggs S (1990) Partial discharge. III. Cavity-induced PD in solid dielectrics. IEEE Electr Insul Mag 6(6):11–16CrossRefGoogle Scholar
  13. Boggs S, Stone G (1982) Fundamental limitations in the measurement of corona and partial discharge. IEEE Trans Electr Insul EI-17(2):143–150CrossRefGoogle Scholar
  14. Cai Z, Wilkinson RH, Bojovschi A (2014) Partial discharge detection approach for a medium voltage switchgear system. Prog Electromagn Res 144:221–228CrossRefGoogle Scholar
  15. Cavallini A, Montanari G, Contin A, Pulletti F (2003) A new approach to the diagnosis of solid insulation systems based on PD signal inference. IEEE Electr Insul Mag 19(2):23–30CrossRefGoogle Scholar
  16. CEN, CENELEC, ETSI (2011) Standards for smart grids. Final report. Technical report, Joint Working Group on Standards for Smart GridsGoogle Scholar
  17. Chen H-C, Chen B-Y, Kuo C-C, Chao M-H (2011) UHF micro-strip antenna design for partial discharge detection of gas insulated switch. In: Lightning (APL), 2011 7th Asia-Pacific international conference on, Chengdu, pp 590–594Google Scholar
  18. Choi J-G, Yi S-H, Kim K-H (2004) Development of a novel tapered balun for the UWB UHF coupler. In: Power modulator symposium, 2004 and 2004 high-voltage workshop. Conference record of the twenty-sixth international, San Francisco, CA, USA, pp 493–496Google Scholar
  19. Cleary GP, Judd M (2006) UHF and current pulse measurements of partial discharge activity in mineral oil. IEE Proc Sci Meas Technol 153(2):47–54CrossRefGoogle Scholar
  20. Contin A, Montanari G, Ferraro C (2000) PD source recognition by weibull processing of pulse height distributions. IEEE Trans Dielectr Electr Insul 7(1):48–58CrossRefGoogle Scholar
  21. Contin A, Cavallini A, Montanari G, Pasini G, Puletti F (2002) Digital detection and fuzzy classification of partial discharge signals. IEEE Trans Dielectr Electr Insul 9(3):335–348CrossRefGoogle Scholar
  22. de Kock N, Herbst I (1998) Partial-discharge measuring device. US Patent 5,804,972Google Scholar
  23. Densley J (2001) Ageing mechanisms and diagnostics for power cables. An overview. IEEE Electr Insul Mag 17(1):14–22CrossRefGoogle Scholar
  24. Dubickas V, Edin H (2004) Couplers for online time domain reflectometry diagnostics of power cables. In: Electrical insulation and dielectric phenomena, 2004. CEIDP’04. 2004 annual report conference on, Boulder, CO, USA, pp 210–214Google Scholar
  25. Eager G, Bader G (1967) Discharge detection in extruded polyethylene insulated power cables. IEEE Trans Power Apparatus Syst PAS-86(1):10–34CrossRefGoogle Scholar
  26. Eur (2010) Smartgrids. Strategic deployment document for europeans electricity networks of the future. Technical report final, European Technology PlatformGoogle Scholar
  27. Fabiani D, Cavallini A, Montanari G (2008) A UHF technique for advanced PD measurements on inverter-fed motors. IEEE Trans Power Electron 23(5):2546–2556CrossRefGoogle Scholar
  28. Fernando S, Rowe W, Wong KL (2012) Long wire antenna-like behavior of uninsulated overhead distribution cables. IEEE Trans Power Deliv 27(3):1116–1123CrossRefGoogle Scholar
  29. Fukasawa T, Miyashita H, Itoh T (2014) Partial discharge sensor. US Patent App. 13/881,551Google Scholar
  30. Gill P (2008) Electrical power equipment maintenance and testing, Power Engineering (Willis), 2nd edn. Taylor & FrancisGoogle Scholar
  31. González-Posadas V, Segovia-Vargas D, Rajo-Iglesias E, Vázquez-Roy J, Martín-Pascual C (2006) Approximate analysis of short circuited ring patch antenna working at tm01 mode. IEEE Trans Antennas Propag 54(6):1875–1879CrossRefGoogle Scholar
  32. Guru B, Hiziroglu H (2004) Electromagnetic field theory fundamentals. Cambridge University Press, Cambridge UKGoogle Scholar
  33. Hampton B, Meats RJ (1988) Diagnostic measurements at UHF in gas insulated substations. IEE Proc C Gener Transm Distrib 135(2):137–145CrossRefGoogle Scholar
  34. Han Y, Song YH (2003) Condition monitoring techniques for electrical equipment. A literature survey. IEEE Trans Power Deliv 18(1):4–13CrossRefGoogle Scholar
  35. Hauschild W, Lemke E (2014) High-voltage test and measuring techniques. Springer, HeidelbergCrossRefGoogle Scholar
  36. Helstrom C (1961) The spectrum of corona noise near a power transmission line. Power apparatus and systems, Part III. Trans Am Inst Electr Eng 80(3):831–835Google Scholar
  37. Herbst I, De K (1996) A partial discharge sensing device for a gas insulated apparatus. EP Patent App. EP19,940,113,728Google Scholar
  38. Hudon C, Bartnikas R, Wertheimer M (1991) Analysis of degradation products on epoxy surfaces subjected to pulse and glow type discharges. In: Electrical insulation and dielectric phenomena, 1991. CEIDP. 1991 annual report. Conference on, pp 237–243Google Scholar
  39. IEC (2010) Smart grid standardization roadmap, edition 1.0. Technical report, Internation Electrotechnical Commission. SMB Smart Grid Strategic Group (SG3)Google Scholar
  40. International Electrotechnical Commission Geneva Switzerland IEC 60507:2013 Artificial pollution tests on high-voltage ceramic and glass insulators to be used on a.c. systems Google Scholar
  41. IEC60270 (2000) High-voltage test techniques – partial discharge measurements, 3a ednGoogle Scholar
  42. IEC62478 (Not published yet) High-voltage test techniques – measurement of partial discharges by electromagnetic and acoustic methods. Proposed horizontal standard, 1 edn, Draft standard, not published yet.Google Scholar
  43. Ishak A, Judd M, Siew W, Baker PC (2012) Evaluation of FDTD modelling as a tool for predicting the response of UHF partial discharge sensors. In: Electrical insulation (ISEI), conference record of the 2012 I.E. international symposium on, San Juan, PR, pp 502–506Google Scholar
  44. Jardine AK, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510CrossRefGoogle Scholar
  45. Jin Z, Sun C, Cheng C, Li J (2008) Two types of compact UHF antennas for partial discharge measurement. In: High voltage engineering and application, 2008. ICHVE 2008. International conference on, Chongqing, pp 616–620Google Scholar
  46. Judd M, Farish O (1998) A pulsed GTEM system for UHF sensor calibration. IEEE Trans Instrum Meas 47(4):875–880CrossRefGoogle Scholar
  47. Judd M, Farish O, Hampton B (1995) Broadband couplers for UHF detection of partial discharge in gas-insulated substations. IEE Proc Sci Meas Technol 142(3):237–243CrossRefGoogle Scholar
  48. Judd M, Farish O, Hampton B (1996) The excitation of UHF signals by partial discharges in GIS. IEEE Trans Dielectr Electr Insul 3(2):213–228CrossRefGoogle Scholar
  49. Judd M, Farish O, Pearson J, Breckenridge T, Pryor BM (2000) Power transformer monitoring using UHF sensors: installation and testing. In: Electrical insulation, 2000. Conference record of the 2000 I.E. international symposium on, Anaheim, CA, USA, pp 373–376Google Scholar
  50. Judd M, Farish O, Pearson J, Hampton B (2001) Dielectric windows for UHF partial discharge detection. IEEE Trans Dielectr Electr Insul 8(6):953–958CrossRefGoogle Scholar
  51. Judd M, Yang L, Hunter I (2005) Partial discharge monitoring of power transformers using UHF sensors. Part I: sensors and signal interpretation. IEEE Electr Insul Mag 21(2):5–14CrossRefGoogle Scholar
  52. Kaneko S, Okabe S, Yoshimura M, Muto H, Nishida C, Kamei M (2009) Detecting characteristics of various type antennas on partial discharge electromagnetic wave radiating through insulating spacer in gas insulated switchgear. IEEE Trans Dielectr Electr Insul 16(5):1462–1472CrossRefGoogle Scholar
  53. Karst J, Groh C, Garbe H (2002) Calculable field generation using TEM cells applied to the calibration of a novel E-field probe. IEEE Trans Electromagn Compat 44(1):59–71CrossRefGoogle Scholar
  54. Kato T, Oshita Y (2000) Partial discharge detector of gas-insulated apparatus. EP Patent App. EP19,970,922,123Google Scholar
  55. Katsuta G, Toya A, Muraoka K, Endoh T, Sekii Y, Ikeda C (1992) Development of a method of partial discharge detection in extra-high voltage cross-linked polyethylene insulated cable lines. IEEE Trans Power Deliv 7(3):1068–1079CrossRefGoogle Scholar
  56. Kiameh P (2003) Electrical equipment handbook: troubleshooting and maintenance. McGraw-Hill, New YorkGoogle Scholar
  57. Klempner G, Kerszenbaum I (2004) Operation and maintenance of large turbo-generators, IEEE Press series on power engineering. Wiley, New YorkCrossRefGoogle Scholar
  58. Knapp C, Carter GC (1976) The generalized correlation method for estimation of time delay. IEEE Trans Acoust Speech Signal Process 24(4):320–327CrossRefGoogle Scholar
  59. Kreuger F (1989) Partial discharge detection in high-voltage equipment. Butterworths, LondonGoogle Scholar
  60. Kreuger F, Wezelenburg M, Wiemer AG, Sonneveld WA (1993) Partial discharge. XVIII. Errors in the location of partial discharges in high voltage solid dielectric cables. IEEE Electr Insul Mag 9(6):15–22CrossRefGoogle Scholar
  61. Kurtz M, Stone G, Freeman D, Mulhall V, Lonseth P (1980) Diagnostic testing of generator insulation without service interruption. CIGRE, ParisGoogle Scholar
  62. Li J, Jiang T, Wang C, Cheng C (2012) Optimization of UHF Hilbert antenna for partial discharge detection of transformers. IEEE Trans Antennas Propag 60(5):2536–2540CrossRefGoogle Scholar
  63. Li M, Guo C, Peng Z (2014) Design of meander antenna for UHF partial discharge detection of transformers. Sens Transducers 171(5):232–238Google Scholar
  64. López-Roldán J, Tang T, Gaskin M (2008) Optimisation of a sensor for onsite detection of partial discharges in power transformers by the UHF method. IEEE Trans Dielectr Electr Insul 15(6):1634–1639CrossRefGoogle Scholar
  65. Markalous S, Tenbohlen S, Feser K (2008) Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals. IEEE Trans Dielectr Electr Insul 15(6):1576–1583CrossRefGoogle Scholar
  66. Mason J (1951) The deterioration and breakdown of dielectrics resulting from internal discharges. Proc IEE Part I General 98(109):44–59CrossRefGoogle Scholar
  67. Matsumoto S, Shiroi N, Suzuki I, Akiba T, Sobataka M, Kasajima K, Shibuya Y, Murooka Y, Kawamura T (2008) Three-axis loop antenna for the detection of partial discharge signal. In: Electrical insulating materials, 2008. (ISEIM 2008). International symposium on, pp 28–31Google Scholar
  68. McAllister I, Crichton G (1998) Partial discharge transients: the field theoretical approach. In: Christophorou L, Olthoff J (eds) Gaseous dielectrics VIII, Springer, Springer US. New York. pp 239–252Google Scholar
  69. Mobley R (2011) Maintenance fundamentals. Plant engineering. Elsevier Science, Oxford UKGoogle Scholar
  70. Moore P, Portugues I, Glover I (2004) Remote diagnosis of overhead line insulation defects. In: Power Engineering Society General Meeting, 2004. IEEE, vol 2, Denver CO, USA. pp 1831–1835Google Scholar
  71. Moore P, Portugués I, Glover I (2005) Radiometric location of partial discharge sources on energized high-voltage plant. IEEE Trans Power Deliv 20(3):2264–2272CrossRefGoogle Scholar
  72. Morshuis P (1993) Partial discharge mechanisms. Delft University Press, NetherlandsGoogle Scholar
  73. Morshuis P (2005) Degradation of solid dielectrics due to internal partial discharge: some thoughts on progress made and where to go now. IEEE Trans Dielectr Electr Insul 12(5):905–913CrossRefGoogle Scholar
  74. Niemeyer L (1993) The physics of partial discharges. In: Partial discharge, 1993., International conference on, Canterbury UK, pp 1–4Google Scholar
  75. Niemeyer L (1995) A generalized approach to partial discharge modeling. IEEE Trans Dielectr Electr Insul 2(4):510–528CrossRefGoogle Scholar
  76. NIST (2012) Frame and roadmap for smart grid interoperability standards, release 2.0. Technical report 1108R2, National Institute of Standards and TechnologyGoogle Scholar
  77. Ozaki T, Abe K, Umemura T (1992) Partial discharge detection using ferrite antenna. In: Electrical insulation, conference record of the 1992 I.E. international symposium on, Baltimore, MD USA pp 371–374Google Scholar
  78. Pearson J, Hampton B, Sellars AG (1991) A continuous UHF monitor for gas-insulated substations. IEEE Trans Electr Insul 26(3):469–478CrossRefGoogle Scholar
  79. Pedersen A, Crichton GC, McAllister IW (1991) The theory and measurement of partial discharge transients. IEEE Trans Electr Insul 26(3):487–497CrossRefGoogle Scholar
  80. Petchphung P, Leelajindakrairerk M, Pattanadech N, Yutthagowith P, Aunchaleevarapan K (2007) The study of disc monopole antenna for partial discharge measurement. In: Power engineering conference, 2007. IPEC 2007. International, Singapore, pp 1292–1296Google Scholar
  81. Pinpart T, Judd M (2009) Experimental comparison of UHF sensor types for PD location applications. In: Electrical insulation conference, 2009. EIC 2009. IEEE, Montreal, QC, pp 26–30Google Scholar
  82. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57CrossRefGoogle Scholar
  83. Portugués I, Moore P, Glover I, Johnstone C, McKosky R, Goff M, van der Zel L (2009) RF-Based partial discharge early warning system for air-insulated substations. IEEE Trans Power Deliv 24(1):20–29CrossRefGoogle Scholar
  84. Raja K (2007) Antenna for detection of partial discharges in a chamber of an electrical instrument. US Patent 7,208,958Google Scholar
  85. Reid AJ, Judd MD, Stewart BG, Fouracre RA (2006) Partial discharge current pulses in SF6 and the effect of superposition of their radiometric measurement. J Phys D Appl Phys 39(19):4167CrossRefGoogle Scholar
  86. Reid A, Stewart M, Judd M (2009) FDTD modeling of UHF partial discharge sensor response. In: Sustainable power generation and supply, 2009. SUPERGEN ‘09. International conference on, Nanjing pp 1–4Google Scholar
  87. Reid A, Judd M, Fouracre R, Stewart BG, Hepburn DM (2011) Simultaneous measurement of partial discharges using IEC60270 and radio-frequency techniques. IEEE Trans Dielectr Electr Insul 18(2):444–455CrossRefGoogle Scholar
  88. Reig C, Ávila Navarro E (2014) Printed antennas for sensor applications: a review. IEEE Sens J 14(8):2406–2418CrossRefGoogle Scholar
  89. Reinhardt H (1985) Measuring arrangement for detecting partial discharge within metal-shielded, pressure gas-isolated high-voltage commutator arrangements. EP Patent App. EP19,840,730,078Google Scholar
  90. Robles G, Albarracín R, Martínez-Tarifa J (2013a) Shielding effect of power transformers tanks in the ultra-high-frequency detection of partial discharges. IEEE Trans Dielectr Electr Insul 20(2):678–684CrossRefGoogle Scholar
  91. Robles G, Albarracín R, Vázquez-Roy J, Rajo-Iglesias E, Martínez-Tarifa J, Rojas-Moreno M, Sánchez-Fernández M, Ardila-Rey J (2013b) On the use of Vivaldi antennas in the detection of partial discharges. In: Solid dielectrics (ICSD), 2013 I.E. international conference on, Bologna Italy, pp 302–305Google Scholar
  92. Robles G, Sanchez-Fernandez M, Albarracin Sanchez R, Rojas-Moreno M, Rajo-Iglesias E, Martinez-Tarifa J (2013c) Antenna parametrization for the detection of partial discharges. IEEE Trans Instrum Meas 62(5):932–941CrossRefGoogle Scholar
  93. Sedding H, Stone G, Campbell S (1991) Measurement of partial discharges on operating turbine generators with a novel wideband coupler. In: Properties and applications of dielectric materials, 1991., proceedings of the 3rd international conference on, vol 2, Tokyo, pp 773–776Google Scholar
  94. Shan Q, Glover I, Moore P, Portugués I, Judd M, Rutherford R, Watson R (2008) TEM horn antenna for detection of impulsive noise. In: Electromagnetic compatibility – EMC Europe, 2008 international symposium on, Hamburg, pp 1–6Google Scholar
  95. Shan Q, Glover I, Atkinson R, Bhatti S, Portugués I, Moore P, Rutherford R, de Fátima Queiroz Vieira M, Lima A, de Souza B (2011) Estimation of impulsive noise in an electricity substation. IEEE Trans Electromagn Compat 53(3):653–663CrossRefGoogle Scholar
  96. Shibuya Y, Matsumoto S, Tanaka M, Muto H, Kaneda Y (2010) Electromagnetic waves from partial discharges and their detection using patch antenna. IEEE Trans Dielectr Electr Insul 17(3):862–871CrossRefGoogle Scholar
  97. Steiner JP, Reynolds P, Weeks W (1992) Estimating the location of partial discharges in cables. IEEE Trans Electr Insul 27(1):44–59CrossRefGoogle Scholar
  98. Stone G (2005) Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans Dielectr Electr Insul 12(5):891–904CrossRefGoogle Scholar
  99. Stone G, Sedding H, Fujimoto N, Braun J-M (1992) Practical implementation of ultrawideband partial discharge detectors. IEEE Trans Electr Insul 27(1):70–81CrossRefGoogle Scholar
  100. Tanaka T (1986) Internal partial discharge and material degradation. IEEE Trans Electr Insul EI-21(6):899–905CrossRefGoogle Scholar
  101. Tang Z, Li C, Cheng X, Wang W, Li J, Li J (2006) Partial discharge location in power transformers using wideband RF detection. IEEE Trans Dielectr Electr Insul 13(6):1193–1199CrossRefGoogle Scholar
  102. Tenbohlen S, Denissov D, Hoek S, Markalous S (2008) Partial discharge measurement in the ultra high frequency (UHF) range. IEEE Trans Dielectr Electr Insul 15(6):1544–1552CrossRefGoogle Scholar
  103. Vázquez-Roy J, Inclan-Sánchez L, Quevedo-Teruel O, Rajo-Iglesias E (2010) Wideband zero-mode circular patch antenna. In: Antennas and propagation (EuCAP), 2010 proceedings of the fourth European conference on, Barcelona, Spain, pp 1–3Google Scholar
  104. Wang G, Hao Y, Li J (2001) Study on the ultrahigh-frequency sensors for PD detection in power transformer. In: Electrical insulating materials, 200L (ISEIM 2001). Proceedings of 2001 international symposium on, Himeji, pp 793–796Google Scholar
  105. Wanninger G (1997) Apparent charge measurement in GIS by modern diagnostic methods. Eur Trans Electr Power 7(4):251–255CrossRefGoogle Scholar
  106. Xing Zhang X, Chen Y, Tang J-Z (2013) A complex structural horn antenna for partial discharge detection. Przeglad Elektrotechniczny 2013(1b):51–55Google Scholar
  107. Xu E, Ding Z, Dasgupta S (2011) Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Trans Signal Process 59(6):2887–2897MathSciNetCrossRefGoogle Scholar
  108. Yao C, Chen P, Huang C, Chen Y, Qiao P (2013) Study on the application of an ultra-high frequency fractal antenna to partial discharge detection in switchgears. Sensors 13(12):17362–17378CrossRefGoogle Scholar
  109. Zargari A, Blackburn TR (1996) Modified optical fibre sensor for PD detection in high-voltage power equipment. In: Electrical insulation, 1996., Conference record of the 1996 I.E. international symposium on, vol 1, Montreal, Que, pp 424–427Google Scholar
  110. Zhang X, Han Y, Li W, Duan X (2014) A rectangular planar spiral antenna for GIS partial discharge detection. Int J Antennas Propag 44:7Google Scholar
  111. Zheng B, Bojovschi A (2012) Electromagnetic sensing of partial discharge in air-insulated medium voltage switchgear. In: Progress in electromagnetics research symposium proceedings. Moscow, RussiaGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  • Guillermo Robles
    • 1
    Email author
  • Ricardo Albarracín
    • 2
  • José Luis Vázquez
    • 3
  1. 1.Department of Electrical EngineeringUniversity Carlos III of MadridLeganesSpain
  2. 2.Design and Innovation of distribution networks Technological surveillanceBoslan S.A.MadridSpain
  3. 3.Department of Signal Theory and CommunicationsUniversity Carlos III of MadridLeganesSpain

Personalised recommendations