Skip to main content

Games for BCI Skill Learning

  • Living reference work entry
  • First Online:
Handbook of Digital Games and Entertainment Technologies

Abstract

A brain–computer interface (BCI) is a device that translates the users’ thoughts directly into action. Brain signal patterns used to encode messages are user specific. However, experimental paradigms used to collect neurophysiological trials from individuals are typically data-centered and not user-centered. This means that experimental paradigms are tuned to collect as many trials as possible – which is indeed important for reliable calibration of pattern recognition – and are generally rather demanding and not very motivating or engaging for individuals. Subject cooperation and their compliance with the task may decrease over time. This leads in turn to a high variability of the collected brain signals and thus results in unreliable pattern recognition. One solution to this issue might be the implementation of engaging games instead of the use of standard paradigms to gain and maintain BCI control. This chapter first reviews basic principles and standard experimental paradigms used in BCI training that detect messages expressed by spontaneous electroencephalogram (EEG) rhythms. Users can independently modulate oscillations by performing appropriate mental tasks. Then, requirements for successful connection of games and these BCI paradigms are outlined in order to provide users with engaging methods to acquire the BCI skill. Last, a novel training concept for BCI in the framework of games is proposed. A recently introduced communication board for users with cerebral palsy is described as example to illustrate game-inspired training paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Recommended Reading

  • B.Z. Allison, C. Neuper, Could anyone use a BCI? in Brain-Computer Interfaces (Springer, London, 2010), pp. 35–54

    Chapter  Google Scholar 

  • B. Blankertz, C. Sannelli, S. Halder, E.M. Hammer, A. Kübler et al., Neurophysiological predictor of SMR-based BCI performance. Neuroimage 51, 1303–1309 (2010)

    Article  Google Scholar 

  • C.J. Bell, P. Shenoy, R. Chalodhorn, R.P.N. Rao, Control of a humanoid robot by a noninvasive brain-computer interface in humans. J. Neural Eng. 5(2), 214–220 (2008). doi:10.1088/1741-2560/5/2/012

    Article  Google Scholar 

  • C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)

    MATH  Google Scholar 

  • J. Breuer, G. Brente, J. Comput. Game Culture 4(1), 7–24 (2010)

    Google Scholar 

  • M. Carter, J. Downs, B. Nansen, M. Harrop, M. Gibbs, Paradigms of games research in HCI: a review of 10 years of research at CHI, in Proceedings of the First ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play (CHI PLAY’14) (ACM, 2014)

    Google Scholar 

  • M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience, vol. 41 (Harper Perennial, New York, 1991)

    Google Scholar 

  • S. Deterding, D. Dixon, R. Khaled, L. Nacke, From game design elements to gamefulness: defining gamification, in Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments (ACM, 2011), pp. 9–15

    Google Scholar 

  • J. Faller, C. Vidaurre, T. Solis Escalante, C. Neuper, R. Scherer, Autocalibration and recurrent adaptation: towards a plug and play online ERD-BCI. IEEE Trans. Neural Syst. Rehabil. Eng. (2012). doi:10.1109/TNSRE.2012.2189584

    Google Scholar 

  • M. Fatourechi, A. Bashashati, R.K. Ward, G.E. Birch, EMG and EOG artifacts in brain computer interface systems: a survey. Clin. Neurophysiol. 118(3), 480–494 (2006)

    Article  Google Scholar 

  • E.V.C. Friedrich, R. Scherer, C. Neuper, The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int. J. Psychophysiol. 84, 86–94 (2012)

    Article  Google Scholar 

  • E.V.C. Friedrich, C. Neuper, R. Scherer, Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually. PLoS One 8(9), e76214 (2013)

    Article  Google Scholar 

  • E.V.C. Friedrich, N. Suttie, A. Sivanathan, T. Lim, S. Louchart, A. Pineda, Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front. Neuroeng. 7, 21 (2014). doi:10.3389/fneng.2014.00021

    Article  Google Scholar 

  • V.A. Holm, The causes of cerebral palsy: a contemporary perspective. JAMA 247(10), 1473–1477 (1982)

    Article  Google Scholar 

  • A. Isaksen, D. Gopstein, A. Nealen, Exploring game space using survival analysis. Foundations of Digital Games. Best Paper in Artificial Intelligence and Game Technology (2015)

    Google Scholar 

  • E.R. Kandel, J.H. Schwartz, T.M. Jessel, S.A. Siegelbaum, J. Hudspeth, Principles of Neural Science, 5th edn. (McGraw-Hill Medical, New York, 2014)

    Google Scholar 

  • S.E. Kober, C. Neuper, Using auditory event-related EEG potentials to assess presence in virtual reality. Int. J. Hum. Comput. Stud. 70, 577–587 (2012)

    Article  Google Scholar 

  • R. Koster, Theory of Fun for Game Design (“O”Reilly Media, Sebastopol, 2013)

    Google Scholar 

  • G. Krausz, R. Scherer, G. Korisek, G. Pfurtscheller, Critical decision-speed and information transfer in the Graz brain–computer interface. Appl. Psychophysiol. Biofeedback 28(3), 233–240 (2003)

    Article  Google Scholar 

  • A. Lecuyer, F. Lotte, R.B. Reilly, R. Leeb, M. Hirose, M. Slater, Brain-computer interfaces, virtual reality, and videogames. Computer 41(10), 66–72 (2008). doi:10.1109/MC.2008.410

    Article  Google Scholar 

  • F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi et al., A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4, R1–R13 (2007)

    Article  Google Scholar 

  • F. Lotte, F. Larrue, C. Mühl, Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design. Front. Hum. Neurosci. 7, 568 (2013)

    Article  Google Scholar 

  • S. Mason, A. Bashashati, M. Fatourechi, K. Navarro, G. Birch, A comprehensive survey of brain interface technology designs. Ann. Biomed. Eng. 35, 137–169 (2007)

    Article  Google Scholar 

  • J.D. Millán, R. Rupp, G.R. Müller-Putz, R. Murray-Smith, C. Giugliemma, M. Tangermann, C. Vidaurre, F. Cincotti, A. Kübler, R. Leeb, et al., Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4, 161 (2010). doi:10.3389/fnins.2010.00161

    Google Scholar 

  • K. Müller, C.W. Anderson, G.E. Birch, Linear and nonlinear methods for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 165–169 (2003). doi:10.1109/TNSRE.2003.814484

    Article  Google Scholar 

  • G.R. Müller-Putz, R. Scherer, C. Brauneis, G. Pfurtscheller, Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J. Neural Eng. 2(4), 123–130 (2005). doi:10.1088/1741-2560/2/4/008

    Article  Google Scholar 

  • G.R. Müller-Putz, R. Scherer, G. Pfurtscheller, C. Neuper, Temporal coding of brain patterns for direct limp control in humans. Front. Neurosci. 4, 34 (2010). doi:10.3389/fnins.2010.00034

    Google Scholar 

  • C. Neuper, G.R. Müller, A. Kübler, N. Birbaumer, G. Pfurtscheller, Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin. Neurophysiol. 114(3), 399–409 (2003)

    Article  Google Scholar 

  • C. Neuper, R. Scherer, M. Reiner, G. Pfurtscheller, Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25(3), 668–677 (2005). doi:10.1016/j.cogbrainres.2005.08.014

    Article  Google Scholar 

  • M. Ninaus, S.E. Kober, E.V.C. Friedrich, I. Dunwell, S. Freitas et al., Neurophysiological methods for monitoring brain activity in serious games and virtual environments: a review. Int. J. Technol. Enhanc. Learn. 6(1), 78 (2014). doi:10.1504/IJTEL.2014.060022

    Article  Google Scholar 

  • E. Niedermeyer, The normal EEG of the waking adult, in Electroencephalography: Basic Principles, Clinical Applications and Related Fields (1999), Williams & Wilkins, Baltimore, pp. 149–173

    Google Scholar 

  • A. Nijholt, D. Tan, Playing with your brain: brain-computer interfaces and games. In Proceedings of the international conference on Advances in computer entertainment technology (ACE ‘07). ACM, New York, pp 305–306 (2007)

    Google Scholar 

  • P.L. Nunez, R. Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG, 2nd edn. (Oxford University Press, New York, 2006)

    Book  Google Scholar 

  • D.G. Oblinger, Games and learning. Educ. Q. 29(3), 5–7 (2006)

    Google Scholar 

  • G. Pfurtscheller, F.H. Lopes da Silva, Event-related EEG/MRG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999). doi:10.1016/ S1388-2457(99)00141-8

    Article  Google Scholar 

  • G. Pfurtscheller, C. Neuper, Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)

    Article  Google Scholar 

  • G. Pfurtscheller, G.R. Müller-Putz, R. Scherer, C. Neuper, Rehabilitation with brain-computer interface systems. Computer 41(10), 58–65 (2008). doi:10.1109/MC.2008.432

    Article  Google Scholar 

  • J. Pirker, S. Berger, C. Gütl, J. Belcher, P.H. Bailey, Understanding physical concepts using an immersive virtual learning environment, in Proceedings of the 2nd European Immersive Education Summit (2012)

    Google Scholar 

  • W. Samek, F.C. Meinecke, K.R. Müller, Transferring subspaces between subjects in brain–computer interfacing. IEEE Trans. Biomed. Eng. 60(8), 2289–2298 (2013). doi:10.1109/TBME.2013.2253608

    Article  Google Scholar 

  • J. Schell, The Art of Game Design: A Book of Lenses (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  • R. Scherer, A. Schlögl, F.Y. Lee, H. Bischof, D. Grassi, G. Pfurtscheller, The self-paced Graz brain-computer interface: methods and applications. Comput. Intell. Neurosci. 2007, 79826 (2007)

    Article  Google Scholar 

  • R. Scherer, J. Faller, D. Balderas, E.V. Friedrich, M. Pröll, B. Allison, G. Müller-Putz, Brain–computer interfacing: more than the sum of its parts. Soft Comput. 17(2), 317–331 (2013a)

    Article  Google Scholar 

  • R. Scherer, G. Moitzi, I. Daly, G.R. Müller-Putz, On the use of games for noninvasive EEG-based functional brain mapping. IEEE Trans. Comput. Intell. AI Games 5(2), 155–163 (2013b). doi:10.1109/TCIAIG.2013.2250287

    Article  Google Scholar 

  • R. Scherer, J. Faller, E.V.C. Friedrich, E. Opisso, U. Costa, A. Kübler, G.R. Müller-Putz, Individually adapted imagery improves brain-computer interface performance in end-users with disability. PLoS One 10(5), e0123727 (2015a). doi:10.1371/journal.pone.0123727

    Article  Google Scholar 

  • R. Scherer, M. Billinger, J. Wagner, A. Schwarz, D.T. Hettich, E. Bolinger, M. Lloria Garcia, J. Navarro, G.R. Müller-Putz, Thought-based row-column scanning communication board for individuals with cerebral palsy. Ann. Phys. Rehabil. Med. (2015b). doi:10.1016/j.rehab.2014.11.005

    Google Scholar 

  • R. Scherer, A. Schwarz, G.R. Müller-Putz, V. Pammer-Schindler, M. Lloria Garcia, Game-based BCI training: interactive design for individuals with cerebral palsy, in Proceedings of the IEEE SMC (2015c), in press

    Google Scholar 

  • M. Slater, V. Linakis, M. Usoh, R. Kooper, in Immersion, Presence and Performance in Virtual Environments: An Experiment with Tri-Dimensional Chess, ed. G. Mark, in Proceedings of the ACM symposium on Virtual reality software and technology (VRST), 1996, pp. 163–172

    Google Scholar 

  • W.O. Tatum, B.A. Dworetzky, D.L. Schomer, Artifact and recording concepts in EEG. J. Clin. Neurophysiol. 28(3), 252–263 (2011)

    Article  Google Scholar 

  • C. Vidaurre, C. Sannelli, K.R. Müller, B. Blankertz, Co-adaptive calibration to improve BCI efficiency. J. Neural Eng. 8(2), 025009 (2011)

    Article  Google Scholar 

  • J. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002). doi:10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Scherer, R. et al. (2015). Games for BCI Skill Learning. In: Nakatsu, R., Rauterberg, M., Ciancarini, P. (eds) Handbook of Digital Games and Entertainment Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-52-8_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-52-8_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-52-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics