Skip to main content

Monte-Carlo Tree Search in Board Games

  • Living reference work entry
  • First Online:
Handbook of Digital Games and Entertainment Technologies

Abstract

Monte-Carlo Tree Search (MCTS) is a best-first search method guided by the results of Monte-Carlo simulations. It is based on randomized exploration of the search space. Using the results of previous explorations, the method gradually builds up a game tree in memory and successively becomes better at accurately estimating the values of the most promising moves. MCTS has substantially advanced the state of the art in board games such as Go, Amazons, Hex, Chinese Checkers, Kriegspiel, and Lines of Action.

This chapter gives an overview of popular and effective enhancements for board game playing MCTS agents. First, it starts by describing the structure of MCTS and giving pseudocode. It also addresses how to adjust MCTS to prove the game-theoretic value of a board position. Next, popular enhancements such as RAVE, progressive bias, progressive widening, and prior knowledge, which improve the simulation in the tree part of MCTS, are discussed in detail. Subsequently, enhancements such as MAST, N-Grams, and evaluation function-based strategies are explained for improving the simulation outside the tree. As modern computers have nowadays multiple cores, this chapter mentions techniques to parallelize MCTS in a straightforward but effective way. Finally, approaches to deal with imperfect information and stochasticity in an MCTS context are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • B. Abramson, Expected-outcome: a general model of static evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 12(2), 182–193 (1990)

    Article  Google Scholar 

  • B. Arneson, R.B. Hayward, P. Henderson, Monte Carlo tree search in Hex. IEEE Trans. Comput. Intell. AI Games 2(4), 251–258 (2010)

    Article  Google Scholar 

  • P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multi-armed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  MATH  Google Scholar 

  • Y. Björnsson, H. Finnsson, CadiaPlayer: a simulation-based general game player. IEEE Trans. Comput. Intell. AI Games 1(1), 4–15 (2009)

    Article  Google Scholar 

  • B. Bouzy, B. Helmstetter, Monte-Carlo Go developments, in Advances in Computer Games 10: Many Games, Many Challenges, ed. by H.J. van den Herik, H. Iida, E.A. Heinz (Kluwer, Boston, 2003), pp. 159–174

    Google Scholar 

  • C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton, A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  • B. Brügmann, Monte Carlo Go. Technical report, Physics Department, Syracuse University, Syracuse, NY, 1993

    Google Scholar 

  • M. Buro, J.R. Long, T. Furtak, N.R. Sturtevant, Improving state evaluation, inference, and search in trick-based card games, in IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, ed. by C. Boutilier (AAAI Press, Menlo Park, CA, 2009), pp. 1407–1413

    Google Scholar 

  • T. Cazenave, A Phantom Go program, in Advances in Computer Games (ACG 11), ed. by H.J. van den Herik, S.-C. Hsu, T.-S. Hsu, H.H.L.M. Donkers. Lecture Notes of Computer Science, vol. 4250 (Springer, Berlin, 2006), pp. 120–125

    Chapter  Google Scholar 

  • T. Cazenave, N. Jouandeau, On the parallelization of UCT, in Proceedings of the Computer Games Workshop 2007 (CGW 2007), ed. by H.J. van den Herik, J.W.H.M. Uiterwijk, M.H.M. Winands, M.P.D. Schadd (Universiteit Maastricht, Maastricht, 2007), pp. 93–101

    Google Scholar 

  • G.M.J.-B. Chaslot, M.H.M. Winands, H.J. van den Herik, J.W.H.M. Uiterwijk, B. Bouzy, Progressive strategies for Monte-Carlo tree search. New Math. Nat. Comput. 4(3), 343–357 (2008a)

    Google Scholar 

  • G.M.J.-B. Chaslot, M.H.M. Winands, H.J. van den Herik, Parallel Monte-Carlo tree search, in Computers and Games (CG 2008), ed. by H.J. van den Herik, X. Xu, Z. Ma, M.H.M. Winands. Lecture Notes in Computer Science (LNCS), vol. 5131 (Springer, Berlin, 2008b), pp. 60–71

    Chapter  Google Scholar 

  • P. Ciancarini, G.P. Favini, Monte Carlo tree search in Kriegspiel. AI J. 174(11), 670–684 (2010)

    MathSciNet  Google Scholar 

  • A. Couetoux, J-B. Hoock, N. Sokolovska, O. Teytaud, N. Bonnard. Continuous upper confidence trees, in Learning and Intelligent Optimization – 5th International Conference (LION 5). Lecture Notes in Computer Science, vol 6683 (Springer Berlin Heidelberg, 2011), pp. 433–445

    Google Scholar 

  • R. Coulom, Computing “Elo ratings” of move patterns in the game of Go. ICGA J. 30(4), 199–208 (2007a)

    Google Scholar 

  • R. Coulom, Efficient selectivity and backup operators in Monte-Carlo tree search, in Computers and Games (CG 2006), ed. by H.J. van den Herik, P. Ciancarini, H.H.L.M. Donkers. Lecture Notes in Computer Science (LNCS), vol. 4630 (Springer, Berlin, 2007b), pp. 72–83

    Chapter  Google Scholar 

  • P.I. Cowling, E.J. Powley, D. Whitehouse, Information set Monte Carlo tree search. IEEE Trans. Comput. Intell. AI Games 4(2), 120–143 (2012)

    Article  Google Scholar 

  • M. Enzenberger, M. Müller, A lock-free multithreaded Monte-Carlo tree search-algorithm, in Advances in Computer Games (ACG 2009), ed. by H.J. van den Herik, P.H.M. Spronck. Lecture Notes in Computer Science (LNCS), vol. 6048 (Springer, Berlin/Heidelberg, 2010), pp. 14–20

    Google Scholar 

  • M. Enzenberger, M. Müller, B. Arneson, R. Segal, Fuego – an open-source framework for board games and Go engine based on Monte Carlo tree search. IEEE Trans. Comput. Intell. AI Games 2(4), 259–270 (2010)

    Article  Google Scholar 

  • S. Gelly, D. Silver, Combining online and offline knowledge in UCT, in Proceedings of the International Conference on Machine Learning (ICML), ed. by Z. Ghahramani (ACM, New York, 2007), pp. 273–280

    Chapter  Google Scholar 

  • S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári, O. Teytaud, The grand challenge of computer Go: Monte Carlo tree search and extensions. Commun. ACM 55(3), 106–113 (2012)

    Article  Google Scholar 

  • M.L. Ginsberg, Gib: steps toward an expert-level bridge-playing program, in Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99), ed. by T. Dean, vol. 1 (Morgan Kaufmann, San Francisco, 1999), pp. 584–589

    Google Scholar 

  • D.E. Knuth, R.W. Moore, An analysis of alpha-beta pruning. Artif. Intell. 6(4), 293–326 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • L. Kocsis, C. Szepesvári, Bandit based Monte-Carlo planning, in Machine Learning: ECML 2006, ed. by J. Fürnkranz, T. Scheffer, M. Spiliopoulou. Lecture Notes in Artificial Intelligence, vol. 4212 (Springer, Berlin, 2006), pp. 282–293

    Chapter  Google Scholar 

  • M. Lanctot, A. Saffidine, J. Veness, C. Archibald, M.H.M. Winands. Monte Carlo *-minimax search, in Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI) (AAAI Press, Menlo Park, CA, USA, 2013), pp. 580–586

    Google Scholar 

  • M. Lanctot, M.H.M. Winands, T. Pepels, N.R. Sturtevant. Monte carlo tree search with heuristic evaluations using implicit minimax backups, in 2014 I.E. Conference on Computational Intelligence and Games, CIG 2014 (IEEE, Piscataway, NJ, USA, 2014), pp. 341–348

    Google Scholar 

  • R.J. Lorentz, Amazons discover Monte-Carlo, in Computers and Games (CG 2008), ed. by H.J. van den Herik, X. Xu, Z. Ma, M.H.M. Winands. Lecture Notes in Computer Science (LNCS), vol. 5131 (Springer, Berlin, 2008), pp. 13–24

    Chapter  Google Scholar 

  • R.J. Lorentz, An MCTS program to play EinStein Würfelt Nicht! in Advances in Computer Games (ACG 2011), ed. by H.J. van den Herik, A. Plaat. LNCS, vol. 7168 (Springer, Berlin, 2012), pp. 52–59

    Chapter  Google Scholar 

  • T.A. Marsland, A review of game-tree pruning. ICCA J. 9(1), 3–19 (1986)

    Google Scholar 

  • I. Millington, J. Funge, Artificial Intelligence for Games, Chapter 7, 2nd edn. (Morgan Kaufmann, Burlington, 2009), pp. 579–665

    Book  Google Scholar 

  • J.A.M. Nijssen, M.H.M. Winands, Enhancements for multi-player Monte-Carlo tree search, in Computers and Games (CG 2010), ed. by H.J. van den Herik, H. Iida, A. Plaat. Lecture Notes in Computer Science (LNCS), vol. 6151 (Springer, Berlin, 2011), pp. 238–249

    Chapter  Google Scholar 

  • J.A.M. Nijssen, M.H.M. Winands, Monte-Carlo tree search for the hide-and-seek game Scotland Yard. IEEE Trans. Comput. Intell. AI Games 4(4), 282–294 (2012a)

    Article  Google Scholar 

  • J.A.M. Nijssen, M.H.M. Winands, Playout search for Monte-Carlo tree search in multi-player games, in 13th International Conference on Advances in Computer Games (ACG 2011), ed. by H.J. van den Herik, A. Plaat. Lecture Notes in Computer Science, vol. 7168 (Springer, Berlin, 2012b), pp. 72–83

    Google Scholar 

  • J.A.M. Nijssen, M.H.M. Winands, Search policies in multi-player games. ICGA J. 36(1), 3–21 (2013)

    Google Scholar 

  • T. Pepels, M.J.W. Tak, M. Lanctot, M.H.M. Winands. Quality-based rewards for Monte-Carlo tree search simulations, in Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), ed. by T. Schaub, G. Friedrich, B. O’Sullivan. Frontiers in Artificial Intelligence and Applications, vol 263 (IOS Press, Amsterdam, The Netherlands 2014), pp. 705–710

    Google Scholar 

  • E.J. Powley, D. Whitehouse, P.I. Cowling. Bandits all the way down: UCB1 as a simulation policy in Monte Carlo tree search, in Computational Intelligence in Games (CIG), 2013 I.E. Conference on (IEEE, Piscataway, NJ, USA, 2013), pp. 81–88

    Google Scholar 

  • H. Robbins, Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58(5), 527–535 (1952)

    Article  MATH  Google Scholar 

  • S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edn. (Prentice-Hall, Upper Saddle River, 2010)

    Google Scholar 

  • J. Schaeffer, The history heuristic. ICCA J. 6(3), 16–19 (1983)

    Google Scholar 

  • B. Sheppard, World-championship-caliber Scrabble. Artif. Intell. 134(1–2), 241–275 (2002)

    Article  MATH  Google Scholar 

  • Y. Soejima, A. Kishimoto, O. Watanabe, Evaluating root parallelization in Go. IEEE Trans. Comput. Intell. AI Games 2(4), 278–287 (2010)

    Article  Google Scholar 

  • J.A. Stankiewicz, M.H.M. Winands, J.W.H.M. Uiterwijk, Monte-Carlo tree search enhancements for Havannah, in Advances in Computer Games (ACG 13), ed. by H.J. van den Herik, A. Plaat. LNCS, vol. 7168 (Springer, Berlin, 2012), pp. 60–71

    Chapter  Google Scholar 

  • N.R. Sturtevant, An analysis of UCT in multi-player games. ICGA J. 31(4), 195–208 (2008)

    Google Scholar 

  • R.S. Sutton, A.G. Barto, Reinforcement learning: an introduction (MIT Press, Cambridge, MA, 1998)

    Google Scholar 

  • M.J.W. Tak, M.H.M. Winands, Y. Björnsson, N-grams and the last-good-reply policy applied in general game playing. IEEE Trans. Comput. Intell. AI Games 4(2), 73–83 (2012)

    Article  Google Scholar 

  • M.J.W. Tak, M.H.M. Winands, Y. Björnsson, Decaying simulation strategies. IEEE Trans. Comput. Intell. AI Games 6(4), 395–406 (2014)

    Article  Google Scholar 

  • F. Teytaud, O. Teytaud. On the huge benefit of decisive moves in Monte-Carlo tree search algorithms, in 2010 I.E. Conference on Computational Intelligence and Games (CIG 2010), ed. by G.N. Yannakakis, J. Togelius (IEEE, Piscataway, NJ, USA 2010), pp. 359–364

    Google Scholar 

  • Y. Tsuruoka, D. Yokoyama, T. Chikayama, Game-tree search algorithm based on realization probability. ICGA J. 25(3), 132–144 (2002)

    Google Scholar 

  • M.H.M. Winands, Y. Björnsson, J.-T. Saito, Monte Carlo tree search in Lines of Action. IEEE Trans. Comput. Intell. AI Games 2(4), 239–250 (2010)

    Article  Google Scholar 

  • M.H.M. Winands, Y. Björnsson. αβ-based play-outs in Monte-Carlo tree search, in 2011 I.E. Conference on Computational Intelligence and Games (CIG 2011), ed. by S-B. Cho, S.M. Lucas, P. Hingston (IEEE, Piscataway, NJ, USA, 2011), pp. 110–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. M. Winands .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Winands, M.H.M. (2015). Monte-Carlo Tree Search in Board Games. In: Nakatsu, R., Rauterberg, M., Ciancarini, P. (eds) Handbook of Digital Games and Entertainment Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-52-8_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-52-8_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-52-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics