Skip to main content

Textile Sensors

  • Living reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

Textiles constitute an ideal choice as platforms for wearable devices, since they are flexible, lightweight, and can be worn everywhere in many forms. This class of textiles with electronic capabilities has been referred to as electronic textiles (e-textiles). Depending on the type and application, e-textiles may be capable of sensing, data processing, actuation, and energy storage or generation. Among all these, textile-based sensing has become an active area of research in the emerging field of e-textiles. Textile based sensors provide an interface between the user and an electronic system by converting physiological or environmental signals into electrical signals. Wearable garments may be capable of monitoring variables such as strain, pressure, temperature, displacement, humidity, etc., and can be used in many applications including medical rehabilitation, health monitoring, communication, entertainment, sports, security, and surveillance. This review provides an overview about textile based sensors that are capable of sensing fundamental signals related to physiological and mechanical activities, including vital signs of a human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. De Rossi D, Della Santa A, Mazzoldi A (1999) Dressware: wearable hardware. Mater Sci Eng C Biomimetic Supramol Syst 7:31–35. doi:10.1016/S0928-4931(98)00069-1

    Article  Google Scholar 

  2. Scilingo EP, Gemignani A, Paradiso R, Taccini N, Ghelarducci B, De Rossi D (2005) Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. IEEE Trans Info Technol Biomed 9:345–352. doi:10.1109/TITB.2005.854506

    Article  Google Scholar 

  3. Lorussi F, Scilingo EP, Tesconi M, Tognetti A, De Rossi D (2005) Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans Info Technol Biomed 9:372–381. doi:10.1109/TITB.2005.854510

    Article  Google Scholar 

  4. Tognetti A, Lorussi F, Bartalesi R, Quaglini S, Tesconi M, Zupone G et al (2005) Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. J Neuro Eng Rehab 2:8. doi:10.1186/1743-0003-2-8

    Article  Google Scholar 

  5. Tesconi M, Scilingo EP, Barba P, De Rossi D (2006) Wearable kinesthetic system for joint knee flexion- extension monitoring in gait analysis. In: Proceedings of the EMBS '06, IEEE, New York, pp 1497–1500

    Google Scholar 

  6. Munro BJ, Campbell TE, Wallace GG, Steele JR (2008) The intelligent knee sleeve: a wearable biofeedback device. Sens Actuator B Chem 131:541–547. doi:10.1016/j.snb.2007.12.041

    Article  Google Scholar 

  7. Tesconi M, Tognetti A, Scilingo EP, Zupone G, Carbonaro N, De Rossi D et al (2007) Wearable sensorized system for analyzing the lower limb movement during rowing activity. In: Proceedings of the ISIE 2007, IEEE, New York, pp 2793–2796

    Google Scholar 

  8. Kang T, Merritt C, Karaguzel B, Wilson J, Franzon P, Pourdeyhimi B et al (2006) Sensors on textile substrates for home-based healthcare monitoring. In: Proceedings of the 1st transdisciplinary conference on distributed diagnosis and home healthcare, IEEE, Arlington, pp 5–7

    Google Scholar 

  9. Morris D, Schazmann B, Wu Y, Coyle S, Brady S, Hayes J et al (2008) Wearable sensors for monitoring sports performance and training. In: Proceedings of the 5th ISSS-MDBS, IEEE, Hong Kong, pp 121–124

    Google Scholar 

  10. Merritt CR, Nagle HT, Grant E (2009) Textile-based capacitive sensors for respiration monitoring. IEEE Sens J 9:71–78. doi:10.1109/JSEN.2008.2010356

    Article  Google Scholar 

  11. Coyle S, Wu Y, Lau K, Brady S, Wallace G, Diamond D (2007) Bio-sensing textiles – wearable chemical biosensors for health monitoring. In: Proceedings of the 4th international workshop on wearable and implantable body sensor networks, Springer, Aachen, pp 35–39

    Google Scholar 

  12. Coyle S, Lau K, Moyna N, O’Gorman D, Diamond D, Di Francesco F et al (2010) BIOTEX-biosensing textiles for personalised healthcare management. IEEE Trans Info Technol Biomed 14:364–370. doi:10.1109/TITB.2009.2038484

    Article  Google Scholar 

  13. Morris D, Coyle S, Wu Y, Lau KT, Wallace G, Diamond D (2009) Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens Actuator B Chem 139:231–236. doi:10.1016/j.snb.2009.02.032

    Article  Google Scholar 

  14. Coyle S, Benito-Lopez F, Radu T, Lau KT, Diamond D (2010) Fibers and fabrics for chemical and biological sensing. Res J Textile App 14:63–71

    Google Scholar 

  15. Curto VF, Fay C, Coyle S, Byrne R, O’Toole C, Barry C, Hughes S, Moyna N, Diamond D, Benito-Lopez F (2012) Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens Actuator B Chem 171–172:1327–1334. doi:10.1016/j.snb.2012.06.048

    Article  Google Scholar 

  16. Yang YL, Chuang MC, Lou SL, Wang J (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135:1230–1234. doi:10.1039/B926339J

    Article  Google Scholar 

  17. Fraden J (2004) Handbook of modern sensors: physics, designs, and applications. Springer, New York

    Google Scholar 

  18. Wilson JS (2005) Sensor technology handbook. Newnes/Elsiver, Amsterdam

    Google Scholar 

  19. Baxter LK (1997) Capacitive sensors: design and applications. IEEE, New York

    Google Scholar 

  20. Meyer J, Lukowicz P, Troester G (2006) Textile pressure sensor for muscle activity and motion detection. In: Proceedings of the 10th IEEE international symposium wearable computers, IEEE, Montreux, pp 69–72

    Google Scholar 

  21. Sergio M, Manaresi N, Campi F, Canegallo R, Tartagni M, Guerrieri R (2003) A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric. IEEE J Solid State Circuits 38:966–975. doi:10.1109/JSSC.2003.811977

    Article  Google Scholar 

  22. Wijesiriwardana R, Mitcham K, Hurley W, Dias T (2005) Capacitive fiber-meshed transducers for touch and proximity-sensing applications. IEEE Sensors J 5:989–994. doi:10.1109/JSEN.2005.844327

    Article  Google Scholar 

  23. Ataman C, Kinkeldei T, Mattana G, Quintero AV, Molina-Lopez F, Courbat J, Cherenack K, Brianda D, Tröster G, de Rooij NF (2013) A robust platform for textile integrated gas sensors. Sens Actuator B Chem 177:1053–1061. doi:10.1016/j.snb.2012.11.099

    Article  Google Scholar 

  24. Takamatsu S, Kobayashi T, Shibayama N, Miyake K, Itoh T (2012) Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sens Actuator A Phys 184:57–63. doi:10.1016/j.sna.2012.06.031

    Article  Google Scholar 

  25. Cheng J, Amft O, Lukowicz P (2010) Active capacitive sensing: exploring a new wearable sensing modality for activity recognition. In: Proceedings of the pervasive 2010 8th international conference on pervasive computing, Springer, Helsinki, pp 319–336

    Google Scholar 

  26. Mattana G, Kinkeldei T, Leuenberger D, Ataman C, Ruan JJ, Molina-Lopez F, Quintero AV, Nisato G, Tröster G, Briand D, de Rooij NF (2013) Woven temperature and humidity sensors on flexible plastic substrates for e-textile applications. IEEE Sensors J 13:3901–3909. doi:10.1109/JSEN.2013.2257167

    Article  Google Scholar 

  27. Kang TH (2006) Textile-embedded sensors for wearable physiological monitoring systems. PhD dissertation, NCSU, Raleigh

    Google Scholar 

  28. Wijesiriwardana R (2006) Inductive fiber-meshed strain and displacement transducers for respiratory measuring systems and motion capturing systems. IEEE Sensors J 6:571–579. doi:10.1109/JSEN.2006.874488

    Article  Google Scholar 

  29. Koo HR, Lee YJ, Gi S, Khang S, Lee JH, Lee JH, Lim MG, Park HJ, Lee JW (2014) The effect of textile-based inductive coil sensor positions for heart rate monitoring. J Med Syst 38:2. doi:10.1007/s10916-013-0002-0

    Article  Google Scholar 

  30. Lee S, Yoo J, Yoo HJ (2009) A wearable ınductor channel design for blood pressure monitoring system in daily life. In: Proceedings of the 3rd international conference on pervasive computing technologies for healthcare, pervasive health, IEEE, London, pp 1–4

    Google Scholar 

  31. Teichmann D, Kuhn A, Leonhardt S, Walter M (2014) The MAIN shirt: a textile-ıntegrated magnetic induction sensor array. Sensors 14:1039–1056. doi:10.3390/s140101039

    Article  Google Scholar 

  32. Coosemans J, Hermans B, Puers R (2006) Integrating wireless ECG monitoring in textiles. Sens Actuator A Phys 130–131:48–53. doi:10.1016/j.sna.2005.10.052

    Article  Google Scholar 

  33. Drean E, Schacher L, Bauer F, Adolphe D (2007) A smart sensor for induced stress measurement in automotive textiles. J Textile Inst 98:523–531. doi:10.1080/00405000701502404

    Article  Google Scholar 

  34. Kechiche MB, Bauer F, Harzallah O, Drean JY (2013) Development of piezoelectric coaxial filament sensors P(VDF-TrFE)/copper for textile structure instrumentation. Sens Actuator A Phys 204:122–130. doi:10.1016/j.sna.2013.10.007

    Article  Google Scholar 

  35. Laxminarayana K, Jalili N (2005) Functional nanotube-based textiles: pathway to next generation fabrics with enhanced sensing capabilities. Textile Res J 75:670–680. doi:10.1177/0040517505059330

    Article  Google Scholar 

  36. Edmison J, Jones M, Nakad Z, Martin T (2002) Using piezoelectric materials for wearable electronic textiles. In: Proceedings of the 6th international symposium on wearable computers, IEEE, Los Alamitos, pp 41–48

    Google Scholar 

  37. Nilsson E, Lund A, Jonasson C, Johansson C, Hagström B (2013) Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens Actuator A Phys 201:477–486. doi:10.1016/j.sna.2013.08.011

    Article  Google Scholar 

  38. Liu J, Lockhart TE, Jones M, Martin T (2008) Local dynamic stability assessment of motion impaired elderly using electronic textile pants. IEEE Trans Autom Sci Eng 5:696–702. doi:10.1109/TASE.2008.923821

    Article  Google Scholar 

  39. Choi SJ, Jiang ZW (2006) A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens Actuator A Phys 128:317–326. doi:10.1016/j.sna.2006.02.012

    Article  Google Scholar 

  40. Lanata A, Scilingo EP, De Rossi D (2010) A multimodal transducer for cardiopulmonary activity monitoring in emergency. IEEE Trans Info Technol Biomed 14:817–825. doi:10.1109/TITB.2009.2024414

    Article  Google Scholar 

  41. El-Sherif MA, Yuan JM, MacDiarmid A (2000) Fiber optic sensors and smart fabrics. J Intell Mater Syst Struct 11:407–414. doi:10.1106/MKNK-E482-GWUG-0HE7

    Article  Google Scholar 

  42. El-Sherif M, Fidanboylu K, El-Sherif D, Gafsi R, Yuan J, Richards K et al (2000) A novel fiber optic system for measuring the dynamic structural behavior of parachutes. J Intell Mater Syst Struct 11:351–359. doi:10.1106/JF6U-2FQ9-FQGE-3VXK

    Article  Google Scholar 

  43. De Jonckheere J, Narbonneau F, Kinet D, Zinke J, Paquet B, Depre A et al (2008) Optical fibre sensors embedded into technical textile for a continuous monitoring of patients under magnetic resonance imaging. In: Proceedings of the 30th annual international conference of the IEEE engineering in medicine and biology society, IEEE, Vancouver, pp 5266–5269

    Google Scholar 

  44. Rothmaier M, Luong MP, Clemens F (2008) Textile pressure sensor made of flexible plastic optical fibers. Sensors 8:4318–4329. doi:10.3390/s8074318

    Article  Google Scholar 

  45. Dhawan A, Muth JF, Kekas DJ, Ghosh TK (2006) Optical nano-textile sensors based on the incorporation of semiconducting and metallic nanoparticles into optical fibers. In: Proceedings of the MRS 2006, MRS, 0920-S05-06. doi:10.1557/PROC-0920-S05-06

    Google Scholar 

  46. Dhawan A, Ghosh TK, Muth JF (2005) Incorporating optical fiber sensors into fabrics. In: Proceedings of MRS 2005, MRS, 870:H1.6.1-6.6. doi: 10.1557/PROC-870-H1.6

    Google Scholar 

  47. Grillet A, Kinet D, Witt J, Schukar M, Krebber K, Pirotte F et al (2008) Optical fiber sensors embedded into medical textiles for healthcare monitoring. IEEE Sensors J 8:1215–1222. doi:10.1109/JSEN.2008.926518

    Article  Google Scholar 

  48. Witt J, Narbonneau F, Schukar M, Krebber K, De Jonckheere J, Jeanne M, Kinet D, Paquet B, Depré A, D´Angelo LT, Thiel T, Logier R (2012) Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement. IEEE Sens J 12:246–254. doi:10.1109/JSEN.2011.2158416

    Article  Google Scholar 

  49. Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157. doi:10.1021/nl801495p

    Article  Google Scholar 

  50. Thomson W (1856) On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc R Soc London 8:546–550. doi:10.1098/rspl.1856.0144

    Article  Google Scholar 

  51. Toprakci HAK, Kalanadhabhatla SK, Spontak RJ, Ghosh TK (2013) Polymer Nanocomposites containing carbon nanofibers as soft printable sensors exhibiting strain-reversible piezoresistivity. Adv Func Mater 23:5536–5542. doi:10.1002/adfm.201300034

    Article  Google Scholar 

  52. Kincal D, Kumar A, Child AD, Reynolds JR (1998) Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synth Met 92:53–56. doi:10.1016/S0379-6779(98)80022-2

    Article  Google Scholar 

  53. Huang C, Shen C, Tang C, Chang S (2008) A wearable yarn-based piezo-resistive sensor. Sens Actuators A Phys 141:396–403. doi:10.1016/j.sna.2007.10.069

    Article  Google Scholar 

  54. Zhang H, Tao XM, Yu TX, Wang SY (2006) Conductive knitted fabric as large-strain gauge under high temperature. Sens Actuators A Phys 126:129–140. doi:10.1016/j.sna.2005.10.026

    Article  Google Scholar 

  55. Atalay O, Kennon WR, Husain MD (2013) Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties. Sensors 13:11114–11127. doi:10.3390/s130811114

    Article  Google Scholar 

  56. Shu L, Hua T, Wang Y, Li Q, Feng DD, Tao X (2010) In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans Inf Technol Biomed 14:767–775. doi:10.1109/TITB.2009.2038904

    Article  Google Scholar 

  57. Campbell TE, Munro BJ, Wallace GG, Steele JR (2007) Can fabric sensors monitor breast motion? J Biomech 40:3056–3059. doi:10.1016/j.jbiomech.2007.01.020

    Article  Google Scholar 

  58. Mattmann C, Clemens F, Troester G (2008) Sensor for measuring strain in textile. Sensors 8:3719–3732. doi:10.3390/s8063719

    Article  Google Scholar 

  59. Cochrane C, Koncar V, Lewandowski M, Dufour C (2007) Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7:473–492

    Article  Google Scholar 

  60. Huang C, Tang C, Lee M, Chang S (2008) Parametric design of yarn-based piezoresistive sensors for smart textiles. Sens Actuator A Phys 148:10–15. doi:10.1016/j.sna.2008.06.029

    Article  Google Scholar 

  61. Mattmann C, Amft O, Harms H, Troester G (2007) Recognizing upper body postures using textile strain sensors. In: Proceedings of the ISWC 2007, IEEE, Los Alamitos, pp 29–36

    Google Scholar 

  62. Pacelli M, Caldani L, Paradiso R. (2006) Textile piezoresistive sensors for biomechanical variables monitoring. In: Proceedings of the 28th IEEE EMBS, IEEE, New York City, pp 5358–5361

    Google Scholar 

  63. Dunne L, Brady S, Smyth B, Diamond D (2005) Initial development and testing of a novel foam-based pressure sensor for wearable sensing. J Neuroeng Rehabil 2:4. doi:10.1186/1743-0003-2-4

    Article  Google Scholar 

  64. Loriga G, Taccini N, De Rossi D, Paradiso R (2005) Textile sensing interfaces for cardiopulmonary signs monitoring. In: Proceedings of the IEEE conference Engineering in Medicine and Biology Society, IEEE, Shanghai, pp 7349–7352

    Google Scholar 

  65. Gibbs P, Asada HH (2005) Wearable conductive fiber sensors for multi-axis human joint angle measurements. J Neuroeng Rehabil 2:7. doi:10.1186/1743-0003-2-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice A. K. Toprakci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Toprakci, H.A.K., Ghosh, T.K. (2015). Textile Sensors. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-68-0_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-68-0_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4451-68-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics