Skip to main content

Polymer Optical Fiber Bragg Grating

  • Reference work entry
  • First Online:

Abstract

Polymer optical fiber Bragg gratings (POFBGs) are attracting increasingly more attention of researchers because of their potential sensing applications. This chapter presents the state of the art of the POFBG research, including its fabrication and properties and some typical applications. Two common grating inscription methods, the phase mask technique and the interferometric technique, are compared. Properties of POFBGs including their thermal, humidity, and strain responses are reviewed. Finally a few typical applications of POFBGs are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Webb DJ, Kalli K (2011) Polymer fiber Bragg gratings. In: Fiber bragg grating sensors: recent advancements, industrial applications and market exploitation, 1st edn. Bentham Science Publishers, United Arab Emirates, pp 292–312

    Google Scholar 

  2. Peng GD, Xiong Z, Chu PL (1999) Photosensitivity and gratings in dye-doped polymer optical fibers. Opt Fiber Technol 5:242–251

    Article  Google Scholar 

  3. Berghmans F, Geernaert T, Baghdasaryan T, Thienpont H (2014) Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres: fabrication of Bragg gratings in microstructured fibers. Laser Photonics Rev 8:27–52. doi:10.1002/lpor.201200103

    Article  Google Scholar 

  4. Liu HY, Peng GD, Chu PL (2002) Thermal stability of gratings in PMMA and CYTOP polymer fibers. Opt Commun 204:151–156

    Article  Google Scholar 

  5. Xiong Z, Peng GD, Wu B, Chu PL (1999) Highly tunable Bragg gratings in single-mode polymer optical fibers. IEEE Photon Technol Lett 11:352–354. doi: 10.1109/68.748232

    Article  Google Scholar 

  6. Liu H, Liu H, Peng G, Chu P (2003) Observation of type I and type II gratings behavior in polymer optical fiber. Opt Commun 220:337–343. doi: 10.1016/S0030-4018(03)01454-8

    Article  Google Scholar 

  7. Liu HY, Liu HB, Peng GD (2005) Tensile strain characterization of polymer optical fibre Bragg gratings. Opt Commun 251:37–43. doi: 10.1016/j.optcom.2005.02.069

    Article  Google Scholar 

  8. Liu H, Peng G, Liu H, and Chu PL (2006) Polymer fibre bragg gratings tunable laser. In: Optical fiber communication conference and exposition and the national fiber optic engineers conference. Anaheim, California, p OWM7

    Google Scholar 

  9. Kalli K, Dobb HL, Webb DJ et al (2007) Development of an electrically tuneable Bragg grating filter in polymer optical fibre operating at 1.55 μm. Meas Sci Technol 18:3155–3164. doi: 10.1088/0957-0233/18/10/S17

    Article  Google Scholar 

  10. Chen X, Zhang C, Webb DJ et al (2010) Bragg grating in a polymer optical fibre for strain, bend and temperature sensing. Meas Sci Technol 21:094005. doi: 10.1088/0957-0233/21/9/094005

    Article  Google Scholar 

  11. Luo Y, Yan B, Li M et al (2011) Analysis of multimode POF gratings in stress and strain sensing applications. Opt Fiber Technol 17:201–209. doi: 10.1016/j.yofte.2011.02.005

    Article  Google Scholar 

  12. Zhang W, Webb D, Peng G (2012) Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor. Opt Lett 37:1370–1372

    Article  Google Scholar 

  13. Rajan G, Mohd Noor MY, Lovell NH et al (2013) Polymer micro-fiber Bragg grating. Opt Lett 38:3359. doi: 10.1364/OL.38.003359

    Article  Google Scholar 

  14. Dobb H, Webb DJ, Kalli K et al (2005) Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers. Opt Lett 30:3296–3298

    Article  Google Scholar 

  15. Webb DJ, Kalli K, Zhang C et al (2008) Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres. In: Proceedings of the SPIE 6990 photonic crystal. Fibers II. Strasbourg, France, p 69900L

    Google Scholar 

  16. Johnson IP, Kalli K, Webb DJ (2010) 827 nm Bragg grating sensor in multimode microstructured polymer optical fibre. Electron Lett 46:1217. doi: 10.1049/el.2010.1595

    Article  Google Scholar 

  17. Johnson IP, Webb DJ, Kalli K (2011) Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fibre. In: Bock WJ, Albert J, Bao X (eds) Proceedings of the SPIE 7753 21st international conference on optical fiber sensors, Ottawa, p 77536T

    Google Scholar 

  18. Bundalo I-L, Nielsen K, Markos C, Bang O (2014) Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Opt Express 22:5270. doi: 10.1364/OE.22.005270

    Article  Google Scholar 

  19. Yu J, Tao X, Tam H (2004) Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings. Opt Lett 29:156–158

    Article  Google Scholar 

  20. Zhang ZF, Zhang C, Tao XM et al (2010) Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing. IEEE Photon Technol Lett 22:1562–1564. doi: 10.1109/LPT.2010.2069090

    Article  Google Scholar 

  21. Luo Y, Zhang Q, Liu H, Peng G-D (2010) Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser. Opt Lett 35:751–753

    Article  Google Scholar 

  22. Cheng XS, Qiu WW, Wu WX et al (2011) High-sensitivity temperature sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber. Chin Opt Lett 9:020602–020604. doi: 10.3788/COL201109.020602

    Article  Google Scholar 

  23. Sáez-Rodríguez D, Nielsen K, Rasmussen HK et al (2013) Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core. Opt Lett 38:3769. doi: 10.1364/OL.38.003769

    Article  Google Scholar 

  24. Yuan W, Khan L, Webb DJ et al (2011) Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt Express 19:19731–19739

    Article  Google Scholar 

  25. Johnson IP, Yuan W, Stefani A et al (2011) Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electron Lett 47:271. doi: 10.1049/el.2010.7347

    Article  Google Scholar 

  26. Yuan W, Webb DJ, Kalli K et al (2011) 870 nm Bragg grating in single mode TOPAS microstructured polymer optical fibre. In: Proceedings of the SPIE 7753, 21st international conference on optical fiber sensors. Ottawa, Canada, p 77538X

    Google Scholar 

  27. Johnson IP, Yuan W, Stefani A et al (2011) Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Electron Lett 47:271–272

    Article  Google Scholar 

  28. Oliveira R, Marques CAF, Bilro L, Nogueira RN (2014) Production and characterization of Bragg gratings in polymer optical fibers for sensors and optical communications. Procedia Technology 15:138–146

    Google Scholar 

  29. Peng GD, Chu PL, Xiong Z et al (1996) Dye-doped step-index polymer optical fiber for broadband optical amplification. Light Technol J 14:2215–2223

    Article  Google Scholar 

  30. Hu X, Sáez-Rodríguez D, Bang O et al (2014) Investigations on birefringence effects in polymer optical fiber Bragg gratings. In: Proceedings of the SPIE 9128, micro-structured and specialty optical fibres III. Brussels, Belgium, p 91280Q

    Google Scholar 

  31. Xiong Z, Peng GD, Wu B, Chu PL (1999) Effects of the zeroth-order diffraction of a phase mask on Bragg gratings. Light Technol J 17:2361–2365. doi: 10.1109/50.803031

    Article  Google Scholar 

  32. Rajan G, Mohd Noor MY, Ambikairajah E, Peng G-D (2014) Inscription of multiple Bragg gratings in a singlemode polymer optical fiber using a single phase mask and its analysis. IEEE Sens J 14:2384–2388. doi: 10.1109/JSEN.2014.2311121

    Article  Google Scholar 

  33. Peng GD, Xiong Z, Chu PL (1999) Photosensitivity and gratings in dye-doped polymer optical fibers. Opt Fiber Technol 5:242–251. doi: 10.1006/ofte.1998.0298

    Article  Google Scholar 

  34. Sáez-Rodríguez D, Nielsen K, Bang O, Webb DJ (2014) Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit. Opt Lett 39:3421. doi: 10.1364/OL.39.003421

    Article  Google Scholar 

  35. Bowden MJ, Chandross EA, Kaminow IP (1974) Mechanism of the photoinduced refractive index increase in polymethyl methacrylate. Polym Eng Sci 14:494–497

    Google Scholar 

  36. Liu HY, Peng GD, Chu PL (2001) Thermal tuning of polymer optical fiber Bragg gratings. IEEE Photon Technol Lett 13:824–826. doi: 10.1109/68.935816

    Article  Google Scholar 

  37. Zhang C, Zhang W, Webb DJ, Peng G-D (2010) Optical fibre temperature and humidity sensor. Electron Lett 46:643–644. doi: 10.1049/el.2010.0879

    Article  Google Scholar 

  38. Carroll KE, Zhang C, Webb DJ et al (2007) Thermal response of Bragg gratings in PMMA microstructured optical fibers. Opt Express 15:8844–8850

    Article  Google Scholar 

  39. Liu H, Liu H, Peng G, Chu P (2003) Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings. Opt Commun 219:139–142. doi: 10.1016/S0030-4018(03)01313-0

    Article  Google Scholar 

  40. Yuan W, Stefani A, Bache M et al (2011) Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Opt Commun 284:176–182. doi: 10.1016/j.optcom.2010.08.069

    Article  Google Scholar 

  41. Waxler RM, Horowitz D, Feldman A (1979) Optical and physical parameters of Plexiglas 55 and Lexan. Appl Opt 18:101–104

    Article  Google Scholar 

  42. Cariou J-M, Dugas J, Martin L, Michel P (1986) Refractive-index variations with temperature of PMMA and polycarbonate. Appl Opt 25:334–336

    Article  Google Scholar 

  43. Moshrefzadeh RS, Radcliffe MD, Lee TC, Mohapatra SK (1992) Temperature dependence of index of refraction of polymeric waveguides. Light Technol J 10:420–425

    Article  Google Scholar 

  44. Jewell JM (1991) Thermooptic coefficients of some standard reference material glasses. J Am Ceram Soc 74:1689–1691. doi: 10.1111/j.1151-2916.1991.tb07162.x

    Article  Google Scholar 

  45. Harbach GN, Limberger HG, Salathé RP (2010) Influence of humidity and temperature on polymer optical fiber Bragg gratings. Bragg Gratings Photosensit. Poling Glass Waveguides. Optical Society of America, Karlsruhe Germany, p BTuB2

    Google Scholar 

  46. Harbach NG (2008) Fiber Bragg gratings in polymer optical fibers. PhD, Ecole Polytechnique Federale de Lausanne

    Google Scholar 

  47. Zhang ZF, Tao XM (2013) Intrinsic temperature sensitivity of fiber Bragg gratings in PMMA-based optical fibers. IEEE Photon Technol Lett 25:310–312. doi: 10.1109/LPT.2012.2235421

    Article  Google Scholar 

  48. Zhang ZF, Tao XM (2012) Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings. Light Technol J 30:841–845. doi: 10.1109/JLT.2011.2182336

    Article  Google Scholar 

  49. Zhang C, Chen X, Webb DJ, Peng G-D (2009) Water detection in jet fuel using a polymer optical fibre Bragg grating. In: Jones JDC (ed) Proceedings of the SPIE 7503 20th international conference on optical fibre sensors, p 750380

    Google Scholar 

  50. Zhang W, Webb DJ (2014) Factors influencing temperature sensitivity of PMMA based optical fiber Bragg gratings. In: Proceedings of the SPIE 9128, micro-structured and specialty optical fibres III. Brussels, Belgium, p 91280M

    Google Scholar 

  51. Zhang W, Webb DJ (2014) Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors. Opt Lett 39:3026. doi: 10.1364/OL.39.003026

    Article  Google Scholar 

  52. Zhang W, Webb DJ (2014) Polymer optical fiber grating as water activity sensor. In: Proceedings of the SPIE 9128, micro-structured and specialty optical fibres III. Brussels, Belgium, p 91280F

    Google Scholar 

  53. Stefani A, Wu Y, Markos C, Bang O (2011) Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers. IEEE Photon Technol Lett 23:660–662. doi: 10.1109/LPT.2011.2125786

    Article  Google Scholar 

  54. Jiang C, Kuzyk MG, Ding J-L et al (2002) Fabrication and mechanical behavior of dye-doped polymer optical fiber. J Appl Phys 92:4. doi: 10.1063/1.1481774

    Article  Google Scholar 

  55. Ye CC, Dulieu-Barton JM, Webb DJ et al (2009) Applications of polymer optical fibre grating sensors to condition monitoring of textiles. J Phys Conf Ser 178:012020

    Google Scholar 

  56. Colpo F, Humbert L, Botsis J (2007) Characterisation of residual stresses in a single fibre composite with FBG sensor. Compos Sci Technol 67:1830–1841. doi: 10.1016/j.compscitech.2006.10.024

    Article  Google Scholar 

  57. Rajan G, Ramakrishnan M, Semenova Y et al (2014) Experimental study and analysis of a polymer fiber Bragg grating embedded in a composite material. Light Technol J 32:1726–1733. doi: 10.1109/JLT.2014.2311441

    Article  Google Scholar 

  58. Goh CS, Mokhtar MR, Butler SA et al (2003) Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package. IEEE Photon Technol Lett 15:557–559. doi: 10.1109/LPT.2003.809300

    Article  Google Scholar 

  59. Zhang W, Webb DJ, Peng G-D (2012) Investigation into time response of polymer fiber Bragg grating based humidity sensors. Light Technol J 30:1090–1096. doi: 10.1109/JLT.2011.2169941

    Article  Google Scholar 

  60. Rajan G, Liu B, Luo Y et al (2013) High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings. IEEE Sens J 13:1794–1800. doi: 10.1109/JSEN.2013.2242883

    Article  Google Scholar 

  61. Chen XF, Zhang C, Webb DJ et al (2010) Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber. IEEE Photon Technol Lett 22:850–852

    Article  Google Scholar 

  62. Zhang ZF, Tao XM, Zhang HP, Zhu B (2013) Soft fiber optic sensors for precision measurement of shear stress and pressure. IEEE Sens J 13:1478–1482. doi: 10.1109/JSEN.2012.2237393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhifeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Zhifeng, Z. (2015). Polymer Optical Fiber Bragg Grating. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_27

Download citation

Publish with us

Policies and ethics