Skip to main content

Mechanisms for Fiber-based Nanogenerators

  • Reference work entry
  • First Online:
Handbook of Smart Textiles
  • 4832 Accesses

Abstract

Fiber-based nanogenerators for personal low-power electronics, the harvesting of energy from biomechanical motions, are believed to be the most reliable route because of efficient energy conversion performance, high durability, and comfort. In this section, the basic concepts and mechanism of fiber-based piezoelectric and triboelectric nanogenerators are summarized. To help understand the mechanism of the fiber-based nanogenerators, theoretical model and analytical theories having been established to calculate the output voltage, current, charges, and influencing factors depending on materials and environmental effects are described. Moreover, related significant applications and computer simulations are also involved in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336

    Google Scholar 

  2. Wang XD (2012) Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1:13–24

    Article  Google Scholar 

  3. Wang ZL, Zhu G, Yang Y, Wang SH, Pan CF (2012) Progress in nanogenerators for portable electronics. Mater Today 15:532–543

    Article  Google Scholar 

  4. Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Man 12:1129–1141

    Article  Google Scholar 

  5. Zhu G, Wang AC, Liu Y, Zhou YS, Wang ZL (2012) Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett 12:3086–3090

    Article  Google Scholar 

  6. Soin N, Shah TH, Anand SC, Geng JF, Pornwannachai W, Mandal P, Reid D, Sharma S, Hadimani RL, Bayramol DV, Siores E (2014) Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ Sci 7:1670–1679

    Article  Google Scholar 

  7. Jung JH, Lee M, Hong JI, Ding Y, Chen CY, Chou LJ, Wang ZL (2011) Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5:10041–10046

    Article  Google Scholar 

  8. Park KI, Xu S, Liu Y, Hwang GT, Kang SJL, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943

    Article  Google Scholar 

  9. Lin YF, Song J, Ding Y, Lu SY, Wang ZL (2008) Piezoelectric nanogenerator using CdS nanowires. Appl Phys Lett 92:0221051–0221053

    Google Scholar 

  10. Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K, Na) NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696

    Article  Google Scholar 

  11. Shenck NS, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21:30–42

    Article  Google Scholar 

  12. Erturk A, Inman DJ (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct 17:065016

    Google Scholar 

  13. Sun CL, Shi JA, Wang XD (2010) Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J Appl Phys 108:034309

    Google Scholar 

  14. Espinosa HD, Bernal RA, Minary-Jolandan M (2012) A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv Mater 24:4656–4675

    Article  Google Scholar 

  15. Koka A, Zhou Z, Sodano HA (2014) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288–296

    Article  Google Scholar 

  16. Action N, Albert C, Pearson L (2012) Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater Res 2012:1–13

    Google Scholar 

  17. Wang ZL (2001) Piezoelectric nanogenerators for self-powered nanosensors and nanosystems. In Wiley encyclopedia of electrical and electronics engineering. John Wiley, Sons, Inc. USA

    Google Scholar 

  18. Wang XD, Song JH, Wang ZL (2007) Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J Mater Chem 17:711–720

    Article  Google Scholar 

  19. Gao Y, Wang ZL (2007) Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7:2499–2505

    Article  Google Scholar 

  20. Lin L, Hu YF, Xu C, Zhang Y, Zhang R, Wen XN, Wang ZL (2013) Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy 2:75–81

    Article  Google Scholar 

  21. Zeng W, Tao XM, Chen S, Shang SM, Chan HLW, Choy SH (2013) Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ Sci 6:2631–2638

    Article  Google Scholar 

  22. Niu SM, Wang SH, Lin L, Liu Y, Zhou YS, Hu YF, Wang ZL (2013) Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci 6:3576–3583

    Article  Google Scholar 

  23. Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557

    Article  Google Scholar 

  24. Zhu G, Pan CF, Guo WX, Chen CY, Zhou YS, Yu RM, Wang ZL (2012) Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett 12:4960–4965

    Article  Google Scholar 

  25. Wang SH, Lin L, Xie YN, Jing QS, Niu SM, Wang ZL (2013) Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 13:2226–2233

    Article  Google Scholar 

  26. Niu SM, Liu Y, Wang SH, Lin L, Zhou YS, Hu YF, Wang ZL (2013) Theory of sliding-mode triboelectric nanogenerators. Adv Mater 25:6184–6193

    Article  Google Scholar 

  27. Lacks DJ, Sankaran RM (2011) Contact electrification of insulating materials. J Phys D Appl Phys 44:453001

    Google Scholar 

  28. Lee KY, Chun J, Lee JH, Kim KN, Kang NR, Kim JY, Kim MH, Shin KS, Gupta MK, Baik JM, Kim SW (2014) Hydrophobic sponge structure-based triboelectric nanogenerator. Adv Mater 26:5037–5042

    Google Scholar 

  29. Nguyen V, Yang RS (2013) Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2:604–608

    Article  Google Scholar 

  30. Kodama J, Foerch R, Mcintyre NS, Castle GSP (1993) Effect of plasma treatment on the triboelectric properties of polymer powders. J Appl Phys 74:4026–4033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Zeng, W. (2015). Mechanisms for Fiber-based Nanogenerators. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_19

Download citation

Publish with us

Policies and ethics