Skip to main content

Millimeter-Wave and THz-Wave Visualization

  • Living reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence

Abstract

This chapter describes the principles of a self-heterodyne and nonpolarimetric frequency down-conversion techniques, and introduces several visualization systems based on these techniques. The visualization technique described here is based on photonics technology, and it demonstrates visualization in the range of 1–600 GHz with the identical system configuration and electro-optic (EO) probes. In addition, using frequency/phase noise cancellation technique together with the nonpolarimetric frequency down-conversion technique, it is possible to visualize the field distribution of the electric field emitted from a self-oscillating device and frequency-modulated continuous wave (FMCW) signal. This chapter also shows various visualization examples in the microwave, millimeter-wave, and terahertz (THz)-wave regions. The visualization example in the microwave region (1–10 GHz) shows the spatial distribution of the electric field between the signal line and the ground plane of the microstrip line. As the examples in the millimeter-wave region, the visualizations of the electric field scattered by a rough metal surface, 77 GHz electric field transmitted through a car bumper, and FMCW signals are presented. Finally, the demonstrations in the THz band includes the visualizations of the radiation field from a broadband optical-to-electrical (O/E) converter (120–600 GHz), wavefront transformation by metal hole array (MHA), modification of the beam shape by a self-healing beam during propagation, and propagation of a pulse train with a center frequency of 120 GHz and a repetition rate of 10 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J.A. Valdmanis, G. Mourou, C.W. Gabel, Picosecond electro-optic sampling system. Appl. Phys. Lett. 41(3), 211–212 (1982)

    Article  Google Scholar 

  2. B. Kolner, D. Bloom, P.S. Cross, Electro-optic sampling with picosecond resolution. Electron. Lett. 19(15), 574–575 (1983)

    Article  Google Scholar 

  3. B. Kolner, D. Bloom, Electrooptic sampling in GaAs integrated circuits. IEEE J. Quantum Electron. 22(1), 79–93 (1986). https://doi.org/10.1109/JQE.1986.1072877

    Article  Google Scholar 

  4. S. Verghese, K.A. McIntosh, S. Calawa, W.F. Dinatale, E.K. Duerr, K.A. Molvar, Generation and detection of coherent terahertz waves using two photomixers. Appl. Phys. Lett. 73(26), 3824–3826 (1998)

    Article  Google Scholar 

  5. A. Nahata, J.T. Yardley, T.F. Heinz, Free-space electro-optic detection of continuous-wave terahertz radiation. Appl. Phys. Lett. 75(17), 2524–2526 (1999)

    Article  Google Scholar 

  6. A.M. Sinyukov, Z. Liu, Y.L. Hor, K. Su, R.B. Barat, D.E. Gary, Z.-H. Michalopoulou, I. Zorych, J.F. Federici, D. Zimdars, Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy. Opt. Lett. 33(14), 1593–1595 (2008)

    Article  Google Scholar 

  7. A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. Cámara Mayorga, R. Gusten, J. Hemberger, M. Gruninger, Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer. J. Opt. Soc. Am. B 29(4), 614–620 (2012)

    Article  Google Scholar 

  8. S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, T. Nagatsuma, Phase-sensitive terahertz self-heterodyne system based on photonic techniques, in 2012 IEEE International Topical Meeting on Microwave Photonics, (IEEE, 2012), pp. 294–297

    Chapter  Google Scholar 

  9. S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 um. IEEE Sensors J. 13(1), 31–36 (2012)

    Article  Google Scholar 

  10. S. Hisatake, J.Y. Kim, K. Ajito, T. Nagatsuma, Self-heterodyne spectrometer using uni-traveling-carrier photodiodes for terahertz-wave generators and optoelectronic mixers. J. Lightwave Technol. 32(20), 3683–3689 (2014)

    Article  Google Scholar 

  11. H. Song, J.-I. Song, Robust terahertz self-heterodyne system using a phase noise compensation technique. Opt. Express 23, 21181–21192 (2015)

    Article  Google Scholar 

  12. H. Song, J.-I. Song, Terahertz-wave vibrometer using a phase-noise-compensated self-heterodyne system. IEEE Photon. Technol. Lett. 28(3), 363–366 (2015)

    Article  Google Scholar 

  13. S. Hisatake, Y. Koda, R. Nakamura, N. Hamada, T. Nagatsuma, Terahertz balanced self-heterodyne spectrometer with SNR-limited phase-measurement sensitivity. Opt. Express 23, 26689–26695 (2015)

    Article  Google Scholar 

  14. S. Hisatake, T. Nagatsuma, Nonpolarimetric technique for homodyne-type electrooptic field detection. Appl. Phys. Express 5(1), 012701 (2011)

    Article  Google Scholar 

  15. S. Hisatake, T. Nagatsuma, Continuous-wave terahertz field imaging based on photonics-based self-heterodyne electro-optic detection. Opt. Lett. 38(13), 2307–2310 (2013)

    Article  Google Scholar 

  16. S. Hisatake, H.H.N. Pham, T. Nagatsuma, Visualization of the spatial–temporal evolution of continuous electromagnetic waves in the terahertz range based on photonics technology. Optica 1(6), 365–371 (2014)

    Article  Google Scholar 

  17. Y. Tanaka, G. Ducournau, C. Belem-Goncalves, F. Gianesello, C. Luxey, I. Watanabe, A. Hirata, N. Sekine, A. Kasamatsu, S. Hisatake, Photonics-based near-field measurement and far-field characterization for 300-GHz band antenna testing. IEEE Open J. Antennas Propag. 3, 24–31 (2021)

    Article  Google Scholar 

  18. D.H. Auston, K.P. Cheung, P.R. Smith, Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 45(3), 284–286 (1984)

    Article  Google Scholar 

  19. S. Hisatake, H. Nakajima, H.H.N. Pham, H. Uchida, M. Tojyo, Y. Oikawa, K. Miyaji, T. Nagatsuma, Mapping of electromagnetic waves generated by free-running self-oscillating devices. Sci. Rep. 7(1), 1–6 (2017)

    Article  Google Scholar 

  20. S. Hisatake, J. Kamada, Y. Asano, H. Uchida, M. Tojo, Y. Oikawa, K. Miyaji, Asynchronous electric field visualization using an integrated multichannel electro-optic probe. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  21. S. Hisatake, K. Yamaguchi, H. Uchida, M. Tojyo, Y. Oikawa, K. Miyaji, T. Nagatsuma, Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system. Appl. Phys. Express 11(4), 046601 (2018)

    Article  Google Scholar 

  22. F. Cecelja, B. Balachandran, M. Berwick, M. Soghomonian, S. Cvetkovic, Optical sensors for the validation of electromagnetic field distributions in biological phantoms. Proc. SPIE Fiber Opt. Lasers Sens. XIII 2510, 244–254 (1995)

    Article  Google Scholar 

  23. S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, M. Tsuchiya, Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field. IEEE Trans. Microw. Theory Techn. 48, 2611–2616 (2000)

    Article  Google Scholar 

  24. H. Takeuchi, S. Hisatake, Microwave signal detection based on the nonpolarimetric frequency down-conversion technique. IEEE Sens. Lett. 4(9), 1–4 (2020)

    Article  Google Scholar 

  25. H.H.N. Pham, S. Hisatake, T. Nagatsuma, Characterization of an F-band horn antenna based on electro-optic near-field measurements. IEICE Trans. Electron. 98(8), 866–872 (2015)

    Article  Google Scholar 

  26. S. Hisatake, Electrooptic field visualization and its application to millimeter-wave and terahertz antenna characterization, in 2017 IEEE Conference on Antenna Measurements & Applications (CAMA), (IEEE, 2017)

    Google Scholar 

  27. S. Hisatake, Electrooptic technique to investigate the scattering phenomena in millimeter-wave band, in 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), (IEEE, 2021), pp. 1–2

    Google Scholar 

  28. S. Hisatake, Asynchronous near-field measurement and far-field characterization using electrooptic probes in the millimeter-wave band, in 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2020, pp. 124–126. https://doi.org/10.1109/RFIT49453.2020.9226240

  29. S. Hisatake, H. H. N. Pham, T. Nagatsuma, Direct observation of terahertz wavefront converted by a metal hole array, in 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2015, pp. 1–2

    Google Scholar 

  30. Y. Tanaka, S. Hisatake, Demonstration of an antenna gain enhancement by a metal hole array at 125 GHz, in 2021 International Topical Meeting on Microwave Photonics (MWP), 2021, pp. 1–4. https://doi.org/10.1109/MWP53341.2021.9639384

  31. H. Arisesa, S. Hisatake, Experimental investigation of wave-packet propagation in terahertz frequency region. Appl. Phys. Express 12(8), 082005 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Hisatake .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hisatake, S. (2023). Millimeter-Wave and THz-Wave Visualization. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics