Advertisement

Metallic and Upconversion Nanoparticles as Photoacoustic Contrast Agents for Biomedical Imaging

  • Kim Truc Nguyen
  • Sivaramapanicker Sreejith
  • Yanli ZhaoEmail author
Living reference work entry

Abstract

Photoacoustic imaging is an emerging biomedical technique. By using nonionized pulsed laser as the excitation source and ultrasound probe as the signal detector, this technique could afford noninvasive imaging for medical diagnostics. In this chapter, current biomedical imaging techniques are discussed and compared in terms of their pros and cons in clinical applications. The basic theory of photoacoustic imaging is elaborated. In order to gain better resolution as well as provide targeted imaging, photoacoustic contrast agents are often employed. Photoacoustic contrast agents such as metallic nanoparticles and upconversion nanoparticles are introduced, revealing promising potentials for clinical uses. Finally, the nanotoxicity of these nanomaterials for practical bioimaging is scrutinized. This chapter presents state-of-the-art research progress of using metallic and upconversion nanoparticles as photoacoustic contrast agents for biomedical imaging.

Keywords

Biomedical imaging Confocal laser scanning microscopy (CLSM) Dermoscopy (DS) High frequency ultrasound imaging (HFUS) Magnetic resonance imaging (MRI) Novel imaging schemes Metallic nanoparticles Photoacoustic contrast agents Photoacoustic imaging Metallic and upconversion nanoparticles, contrast agents Molecular photoacoustic imaging Phenomenon of Photoacoustic microscopy (PAM) Photoacoustic tomography (PAT) Photoacoustics based multi-modality imaging Upconversion nanoparticles 

References

  1. 1.
    Aspres N, Egerton IB, Lim AC, Shumack SP (2003) Imaging the skin. Australas J Dermatol 44:19–27CrossRefGoogle Scholar
  2. 2.
    Argenziano G, Soyer HP, Chimenti S, Talamini R, Corona R, Sera F, Binder M, Cerroni L, De Rosa G, Ferrara G, Hofmann-Wellenhof R, Landthaler M, Menzies SW, Pehamberger H, Piccolo D, Rabinovitz HS, Schiffner R, Staibano S, Stolz W, Bartenjev I, Blum A, Braun R, Cabo H, Carli P, De Giorgi V, Fleming MG, Grichnik JM, Grin CM, Halpern AC, Johr R, Katz B, Kenet RO, Kittler H, Kreusch J, Malvehy J, Mazzocchetti G, Oliviero M, Özdemir F, Peris K, Perotti R, Perusquia A, Pizzichetta MA, Puig S, Rao B, Rubegni P, Saida T, Scalvenzi M, Seidenari S, Stanganelli I, Tanaka M, Westerhoff K, Wolf IH, Braun-Falco O, Kerl H, Nishikawa T, Wolff K, Kopf AW (2003) Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J Am Acad Dermatol 48:679–693CrossRefGoogle Scholar
  3. 3.
    Schmid-Wendtner MH, Burgdorf W (2005) Ultrasound scanning in dermatology. Arch Dermatol 141:217–224CrossRefGoogle Scholar
  4. 4.
    Stefanowska J, Zakowiecki D, Cal K (2010) Magnetic resonance imaging of the skin. J Eur Acad Dermatol Venereol 24:875–880CrossRefGoogle Scholar
  5. 5.
    Branzan AL, Landthaler M, Szeimies RM (2007) In vivo confocal scanning laser microscopy in dermatology. Lasers Med Sci 22:73–82CrossRefGoogle Scholar
  6. 6.
    Tsai TH, Jee SH, Dong CY, Lin SJ (2009) Multiphoton microscopy in dermatological imaging. J Dermatol Sci 56:1–8CrossRefGoogle Scholar
  7. 7.
    Zalaudek I, Argenziano G, Di Stefani A, Ferrara G, Marghoob AA, Hofmann-Wellenhof R, Soyer HP, Braun R, Kerl H (2006) Dermoscopy in general dermatology. Dermatology 212:7–18CrossRefGoogle Scholar
  8. 8.
    Zalaudek I, Kreusch J, Giacomel J, Ferrara G, Catrical C, Argenziano G (2010) How to diagnose nonpigmented skin tumors: a review of vascular structures seen with dermoscopy: part I. Melanocytic skin tumors. J Am Acad Dermatol 63:361–376CrossRefGoogle Scholar
  9. 9.
    Koehler MJ, Speicher M, Lange-Asschenfeldt S, Stockfleth E, Metz S, Elsner P, Kaatz M, König K (2011) Clinical application of multiphoton tomography in combination with confocal laser scanning microscopy for in vivo evaluation of skin diseases. Exp Dermatol 20:589–594CrossRefGoogle Scholar
  10. 10.
    Dill-Müller D, Maschke J (2007) Ultrasonography in dermatology. J Dtsch Dermatol Ges 5:689–707CrossRefGoogle Scholar
  11. 11.
    Cammarota T, Pinto F, Magliaro A, Sarno A (1998) Current uses of diagnostic high-frequency US in dermatology. Eur J Radiol 27:S215–S223CrossRefGoogle Scholar
  12. 12.
    Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422CrossRefGoogle Scholar
  13. 13.
    Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77CrossRefGoogle Scholar
  14. 14.
    Aubry S, Casile C, Humbert P, Jehl J, Vidal C, Kastler B (2009) Feasibility study of 3-T MR imaging of the skin. Eur Radiol 19:1595–1603CrossRefGoogle Scholar
  15. 15.
    Kang HY, Bahadoran P, Ortonne JP (2010) Reflectance confocal microscopy for pigmentary disorders. Exp Dermatol 19:233–239CrossRefGoogle Scholar
  16. 16.
    Nobre Moura F, Dalle S, Depaepe L, Durupt F, Balme B, Thomas L (2011) Melanoma: early diagnosis using in vivo reflectance confocal microscopy. Clin Exp Dermatol 36:209–211CrossRefGoogle Scholar
  17. 17.
    Koller S, Gerger A, Ahlgrimm-Siess V, Weger W, Smolle J, Hofmann-Wellenhof R (2009) In vivo reflectance confocal microscopy of erythematosquamous skin diseases. Exp Dermatol 18:536–540CrossRefGoogle Scholar
  18. 18.
    Koehler MJ, Lange-Asschenfeldt S, Kaatz M (2011) Non-invasive imaging techniques in the diagnosis of skin diseases. Expert Opin Med Diagn 5:425–440CrossRefGoogle Scholar
  19. 19.
    Lieber CA, Majumder SK, Billheimer D, Ellis DL, Mahadevan-Jansen A (2008) Raman microspectroscopy for skin cancer detection in vitro. J Biomed Opt 13:024013CrossRefGoogle Scholar
  20. 20.
    Wollina U, Schmidt WD, Koch A, Scheibe A, Erfurth F, Fassler D (2009) Fluorescence remission spectroscopy of psoriatic lesions and the effect of topical anthralin therapy. J Eur Acad Dermatol Venereol 23:1409–1413CrossRefGoogle Scholar
  21. 21.
    Wallace VP, Fitzgerald AJ, Pickwell E, Pye RJ, Taday PF, Flanagan N, Thomas HA (2006) Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl Spectrosc 60:1127–1133CrossRefGoogle Scholar
  22. 22.
    Roberts MS, Dancik Y, Prow TW, Thorling CA, Lin LL, Grice JE, Robertson TA, König K, Becker W (2011) Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur J Pharm Biopharm 77:469–488CrossRefGoogle Scholar
  23. 23.
    Vogler N, Meyer T, Akimov D, Latka I, Krafft C, Bendsoe N, Svanberg K, Dietzek B, Popp J (2010) Multimodal imaging to study the morphochemistry of basal cell carcinoma. J Biophotonics 3:728–736CrossRefGoogle Scholar
  24. 24.
    Benati E, Bellini V, Borsari S, Dunsby C, Ferrari C, French P, Guanti M, Guardoli D, Koenig K, Pellacani G, Ponti G, Schianchi S, Talbot C, Seidenari S (2011) Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy. Skin Res Technol 17:295–303CrossRefGoogle Scholar
  25. 25.
    Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462CrossRefGoogle Scholar
  26. 26.
    Bell AG (1880) On the production and reproduction of sound by light. Am J Sci 20:305–324CrossRefGoogle Scholar
  27. 27.
    Kreuzer LB (1971) Ultralow gas concentration infrared absorption spectroscopy. J Appl Phys 42:2934–2943CrossRefGoogle Scholar
  28. 28.
    Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320CrossRefGoogle Scholar
  29. 29.
    Wang LV (2009) Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 3:503–509CrossRefGoogle Scholar
  30. 30.
    Zhang HF, Maslov K, Stoica G, Wang LV (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24:848–851CrossRefGoogle Scholar
  31. 31.
    Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Köster RW, Ntziachristos V (2009) Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photonics 3:412–417CrossRefGoogle Scholar
  32. 32.
    Wang LV, Zhao X, Sun H, Ku G (1999) Microwave-induced acoustic imaging of biological tissues. Rev Sci Instrum 70:3744–3748CrossRefGoogle Scholar
  33. 33.
    Kruger RA, Reinecke DR, Kruger GA (1999) Thermoacoustic computed tomography-technical considerations. Med Phys 26:1832–1837CrossRefGoogle Scholar
  34. 34.
    Trevena DH (1966) Propagation of stress pulses across the interface between two immiscible liquids [5]. Nature 209:289CrossRefGoogle Scholar
  35. 35.
    Oraevsky AA, Jacques SL, Tittel FK (1997) Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl Opt 36:402–415CrossRefGoogle Scholar
  36. 36.
    Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21:803–806CrossRefGoogle Scholar
  37. 37.
    Maslov K, Zhang HF, Hu S, Wang LV (2008) Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 33:929–931CrossRefGoogle Scholar
  38. 38.
    Rao B, Maslov K, Danielli A, Chen R, Shung KK, Zhou Q, Wang LV (2011) Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution. Opt Lett 36:1137–1139CrossRefGoogle Scholar
  39. 39.
    Manohar S, Vaartjes SE, Van Hespen JCG, Klaase JM, Van Den Engh FM, Steenbergen W, Van Leeuwen TG (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15:12277–12285CrossRefGoogle Scholar
  40. 40.
    Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed. Opt Express 1:278–284CrossRefGoogle Scholar
  41. 41.
    Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30:507–509CrossRefGoogle Scholar
  42. 42.
    Kolkman RGM, Brands PJ, Steenbergen W, Van Leeuwen TG (2008) Real-time in vivo photoacoustic and ultrasound imaging. J Biomed Opt 13:050510CrossRefGoogle Scholar
  43. 43.
    Niederhauser JJ, Jaeger M, Lemor R, Weber P, Frenz M (2005) Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans Med Imaging 24:436–440CrossRefGoogle Scholar
  44. 44.
    Rousseau G, Blouin A, Monchalin J-P (2012) Non-contact photoacoustic tomography and ultrasonography for tissue imaging. Biomed Opt Express 3:16–25CrossRefGoogle Scholar
  45. 45.
    Laufer J, Zhang E, Beard P (2010) Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging. IEEE J Sel Top Quant 16:600–607CrossRefGoogle Scholar
  46. 46.
    Zerda ADL, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10:2168–2172CrossRefGoogle Scholar
  47. 47.
    De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma T-J, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557–562CrossRefGoogle Scholar
  48. 48.
    Nguyen KT, Sreejith S, Joseph J, He T, Borah P, Guan EY, Lye SW, Sun H, Zhao Y (2014) Poly(acrylic acid)-capped and dye-loaded graphene oxide-mesoporous silica: a nano-sandwich for two-photon and photoacoustic dual-mode imaging. Part Part Syst Char 31:1060–1066CrossRefGoogle Scholar
  49. 49.
    Lalwani G, Cai X, Nie L, Wang LV, Sitharaman B (2013) Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. Photoacoustics 1:62–67CrossRefGoogle Scholar
  50. 50.
    Patel MA, Yang H, Chiu PL, Mastrogiovanni DDT, Flach CR, Savaram K, Gomez L, Hemnarine A, Mendelsohn R, Garfunkel E, Jiang H, He H (2013) Direct production of graphene nanosheets for near infrared photoacoustic imaging. ACS Nano 7:8147–8157CrossRefGoogle Scholar
  51. 51.
    Sheng Z, Song L, Zheng J, Hu D, He M, Zheng M, Gao G, Gong P, Zhang P, Ma Y, Cai L (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243CrossRefGoogle Scholar
  52. 52.
    Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102:064701CrossRefGoogle Scholar
  53. 53.
    Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354CrossRefGoogle Scholar
  54. 54.
    Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825–2831CrossRefGoogle Scholar
  55. 55.
    Song KH, Kim C, Cobley CM, Xia Y, Wang LV (2009) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9:183–188CrossRefGoogle Scholar
  56. 56.
    Sreejith S, Joseph J, Nguyen KT, Murukeshan VM, Lye SW, Zhao Y (2015) Graphene oxide wrapping of gold–silica core–shell nanohybrids for photoacoustic signal generation and bimodal imaging. ChemNanoMat 1:39–45CrossRefGoogle Scholar
  57. 57.
    Homan K, Shah J, Gomez S, Gensler H, Karpiouk A, Brannon-Peppas L, Emelianov S (2010) Silver nanosystems for photoacoustic imaging and image-guided therapy. J Biomed Opt 15:021316CrossRefGoogle Scholar
  58. 58.
    Homan KA, Souza M, Truby R, Luke GP, Green C, Vreeland E, Emelianov S (2012) Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano 6:641–650CrossRefGoogle Scholar
  59. 59.
    Alwi R, Telenkov S, Mandelis A, Leshuk T, Gu F, Oladepo S, Michaelian K (2012) Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express 3:2500–2509CrossRefGoogle Scholar
  60. 60.
    Grootendorst DJ, Jose J, Fratila RM, Visscher M, Velders AH, Ten Haken B, Van Leeuwen TG, Steenbergen W, Manohar S, Ruers TJM (2013) Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging. Contrast Media Mol I 8:83–91CrossRefGoogle Scholar
  61. 61.
    Shashkov EV, Everts M, Galanzha EI, Zharov VP (2008) Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett 8:3953–3958CrossRefGoogle Scholar
  62. 62.
    Maji SK, Sreejith S, Joseph J, Lin M, He T, Tong Y, Sun H, Yu SW-K, Zhao Y (2014) Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv Mater 26:5633–5638CrossRefGoogle Scholar
  63. 63.
    Guo H, Ruan F, Lu L, Hu J, Pan J, Yang Z, Ren B (2009) Correlating the shape, surface plasmon resonance, and surface-enhanced Raman scattering of gold nanorods. J Phys Chem C 113:10459–10464CrossRefGoogle Scholar
  64. 64.
    Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58:3–7CrossRefGoogle Scholar
  65. 65.
    Lee K-S, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109:20331–20338CrossRefGoogle Scholar
  66. 66.
    Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7:1730–1739CrossRefGoogle Scholar
  67. 67.
    Pan D, Pramanik M, Senpan A, Ghosh S, Wickline SA, Wang LV, Lanza GM (2010) Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 31:4088–4093CrossRefGoogle Scholar
  68. 68.
    Pan D, Pramanik M, Senpan A, Allen JS, Zhang H, Wickline SA, Wang LV, Lanza GM (2011) Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J 25:875–882CrossRefGoogle Scholar
  69. 69.
    Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS (2012) Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6:10366–10377CrossRefGoogle Scholar
  70. 70.
    Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61:727–728CrossRefGoogle Scholar
  71. 71.
    R. F. Service (2004) Nanotechnology grows up. Science 304:1732–1734CrossRefGoogle Scholar
  72. 72.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839CrossRefGoogle Scholar
  73. 73.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  74. 74.
    Yong KT, Swihart MT (2012) In vivo toxicity of quantum dots: no cause for concern? Nanomedicine (Lond) 7:1641–1643CrossRefGoogle Scholar
  75. 75.
    Heng BC, Das GK, Zhao X, Ma LL, Tan TT, Ng KW, Loo JS (2010) Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays. Biointerphases 5:FA88–FA97Google Scholar
  76. 76.
    Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134CrossRefGoogle Scholar
  77. 77.
    Heng BC, Zhao X, Tan EC, Khamis N, Assodani A, Xiong S, Ruedl C, Ng KW, Loo JS (2011) Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol 85:1517–1528CrossRefGoogle Scholar
  78. 78.
    Setyawati MI, Khoo PK, Eng BH, Xiong S, Zhao X, Das GK, Tan TT, Loo JS, Leong DT, Ng KW (2012) Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human fibroblasts. J Biomed Mater Res A 101A:633–640CrossRefGoogle Scholar
  79. 79.
    Ng KW, Khoo SP, Heng BC, Setyawati MI, Tan EC, Zhao X, Xiong S, Fang W, Leong DT, Loo JS (2011) The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 32:8218–8225CrossRefGoogle Scholar
  80. 80.
    Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789CrossRefGoogle Scholar
  81. 81.
    Zhao Y, Howe JL, Yu Z, Leong DT, Chu JJ, Loo JS, Ng KW (2012) Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small 9:387–392CrossRefGoogle Scholar
  82. 82.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  • Kim Truc Nguyen
    • 1
  • Sivaramapanicker Sreejith
    • 1
  • Yanli Zhao
    • 1
    • 2
    Email author
  1. 1.Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations