Skip to main content

Ultrasonic Synthesis of Ceramic Materials: Fundamental View

  • Living reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry
  • 292 Accesses

Abstract

This article is concerned with fundamental materials systems consisting of commonplace or ubiquitous elements (Si, O, Al, Fe, etc.), aiming at how to draw out the novel potentiality of sonochemistry to ceramic processing rather than to reach hurriedly to modern functional materials in popularity. Silica sphere synthesis is a main topic discussed in detail. Ultrasonication during the synthesis caused a curious agglomeration presumably due both to an ultrasonic-induced collision and to surface activity of silica spheres. Another type of sonication at very low intensity is newly proposed here to enhance the aging of starting solutions. This novel concept is based on a hypothesis that microscopic homogeneity is not guaranteed in a transparent solution. In the experimental facts, the aging of the starting solutions results in a delay of precipitation, narrowing of sphere size distribution, and increase of sphere size (i.e., decrease of nucleus number), which can be attributable to an increased microscopic homogeneity in the starting solutions. Other fundamental systems presented are crystallization from a supersaturated solution of alum (ammonium aluminum sulfate hydrate), solidification of molten inorganic salts (nitrate binary), and dissolution in and reprecipitation from a mother solution (ripening of aluminogels and oxidation of magnetic nanoparticles).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dislich H (1971) New routes to multicomponent oxide glasses. Angew Chem Int Ed 10(6):363–434

    Article  CAS  Google Scholar 

  2. Dislich H (1990) Sol-gel 1984–2004 (?). J Noncryst Solid 73:599–612

    Article  Google Scholar 

  3. Rosa-Fox N, Esquivias L, Craievich AF, Zarzycki J (1990) Structural study of silica sonogels. J Noncryst Solid 121:211–215

    Article  Google Scholar 

  4. Ramírez-Del-Solar M, Rosa-Fox N, Esquivias L, Zarzycki J (1990) Kinetic study of gelation of solventless alkoxide-water mixtures. J Noncryst Solid 121:40–44

    Article  Google Scholar 

  5. Støber W, Fink A, Bohn E (1968) Controlled growth of monodispersed silica spheres in micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  6. Mıguez H, López C, Meseguer F, Blanco A, Vázquez L, Mayoral R, Ocaña M, Fornés V, Mifsud A (1997) Photonic crystal properties of packed submicrometric SiO2 spheres. Appl Phys Lett 71:1148–1150

    Article  Google Scholar 

  7. Wijnhoven JEGJ, Vos WL (1998) Preparation of photonic crystals made of air spheres in titania. Science 281(7):802–804

    Article  CAS  Google Scholar 

  8. Arsenault AC, Míguez H, Kitaev V, Ozin GA, Manners I (2003) A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink). Adv Mater 15(6):503–507

    Article  CAS  Google Scholar 

  9. Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20(16):2565–2578

    Article  CAS  Google Scholar 

  10. Ogihara T, Nakajima H, Yanagawa T, Ogata N, Yoshida K, Matsushita N (1991) Preparation of monodisperse, spherical alumina powders from alkoxides. J Am Ceram Soc 74(9):2263–2269

    Article  CAS  Google Scholar 

  11. Ikemoto T, Uematsu K, Mizutani N, Kato M (1985) Synthesis of monodispersed titania fine particles by hydrolysis of Ti(OC2H5)4. J Ceram Soc Jpn 93(5):261–266

    CAS  Google Scholar 

  12. Ikemoto T, Mizutani N, Kato M, Mitarai Y (1985) Synthesis of monodispersed zirconia fine particles. J Ceram Soc Jpn 93(9):585–586

    CAS  Google Scholar 

  13. Enomoto N, Koyano T, Nakagawa Z (1996) Effect of ultrasound on synthesis of spherical silica. Ultrason Sonochem 3:S105–S109

    Article  CAS  Google Scholar 

  14. Enomoto N, Maruyama S, Nakagawa Z (1997) Agglomeration of silica spheres under ultrasonication. J Mater Res 12(5):1410–1415

    Article  CAS  Google Scholar 

  15. Doktycz SJ, Suslick KS (1990) Interparticle collisions driven by ultrasound. Science 247:1067–1069; Prozorov T, Prozorov R, Suslick KS (2004) High velocity interparticle collisions driven by ultrasound. J Am Chem Soc 126:13890–13891

    Google Scholar 

  16. Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10:149–156

    Article  CAS  Google Scholar 

  17. Yamaguchi K (2003) Cold-spray ionization mass spectrometry: principle and applications. J Mass Spectrom 38:473–490

    Article  CAS  Google Scholar 

  18. Enomoto N, Shiihara J, Hongo T, Nakagawa Z (1999) Effect of starting solutions on wet-chemical powder preparation using ethanolic solution of oxalic acid. J Ceram Soc Jpn 107(3):278–281

    Article  CAS  Google Scholar 

  19. Enomoto N, Kumagai A, Hojo J (2005) Aging effect of starting solutions for spherical silica synthesis. J Ceram Soc Jpn 113(5):340–343

    Article  CAS  Google Scholar 

  20. Enomoto N, Kumagai A, Hojo J (2005) Effect of soft sonication on starting solutions for spherical silica synthesis. J Ceram Process Res 6(4):286–289

    Google Scholar 

  21. Enomoto N, Sung TH, Nakagawa Z, Lee SC (1992) Effect of ultrasonic waves on crystallization from a supersaturated solution of alum. J Mater Sci 27:5239–5243

    Article  CAS  Google Scholar 

  22. Hiedemann EA (1954) Metallurgical effects of ultrasonic waves. J Acoust Soc Am 26(5):831–842

    Article  Google Scholar 

  23. Eskin GI, Eskin DG (2003) Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt. Ultrason Sonochem 10(4–5):297–301

    Article  CAS  Google Scholar 

  24. Enomoto N, Iimura Y, Nakagawa Z (1997) Microstructure of nitrate polycrystals solidified under ultrasonic vibration. J Mater Res 12(2):371–376

    Article  CAS  Google Scholar 

  25. Enomoto N, Katsumoto M, Nakagawa Z (1994) Effect of ultrasound on the dissolution-precipitation process in the aluminum hydroxide- water system. J Ceram Soc Jpn 102(12):1105–1111

    Article  CAS  Google Scholar 

  26. Ando T, Bauchat P, Foucaud A, Fujita M, Kimura T, Sohmiya H (1991) Sonochemical switching from ionic to radical pathways in the reactions of styrene and trans-b-methylstyrene with lead tetraacetate. Tetrahedron Lett 32(44):6379–6382

    Article  CAS  Google Scholar 

  27. Enomoto N, Akagi J, Nakagawa Z (1996) Sonochemical powder processing of iron hydroxides. Ultrason Sonochem 3(2):97–103

    Article  Google Scholar 

  28. Dang F, Kamada K, Enomoto N, Hojo J, Enpuku K (2007) Sonochemical synthesis of the magnetite nanoparticles in aqueous solution. J Ceram Soc Jpn 115:867–872

    Article  CAS  Google Scholar 

  29. Dang F, Enomoto N, Hojo J, Enpuku K (2009) Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent. Ultrason Sonochem 16(5):649–654

    Article  CAS  Google Scholar 

  30. Dang F, Enomoto N, Hojo J, Enpuku K (2010) Sonochemical coating of magnetite nanoparticles with silica. Ultrason Sonochem 17(1):193–199

    Article  CAS  Google Scholar 

  31. Enomoto N, Yamada K, Dang F, Inada M, Hojo J (2009) Synthesis of magnetite nanoparticles understanding ultrasonication. J Jpn Soc Powder Powder Metall 56(4):194–198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Enomoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Enomoto, N. (2015). Ultrasonic Synthesis of Ceramic Materials: Fundamental View. In: Ashokkumar, M. (eds) Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-470-2_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-470-2_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-287-470-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics