Advertisement

Ultrasound Processing of Milk and Dairy Products

  • Jayani ChandrapalaEmail author
Reference work entry

Abstract

The application of ultrasound to conventional dairy processes has the potential to provide significant benefits to dairy industry such as possible cost savings and improved product properties. Moreover, the appeal of ultrasound as a processing technique has been regarded safe compared to other emerging technologies. During the past decade, the technology has rapidly emerged as a mild nonthermal processing tool capable of replacing or assisting many conventional dairy processing applications such as inactivation of microbes and enzymes, homogenization and emulsification, creaming, crystallization, and functionality modifications within dairy systems. These aspects are highlighted in this chapter.

Keywords

Milk and dairy products Dairy powders Emulsification Gel formation Microbial inactivation Sonocrystallisation Ultrasound assisted filtration Viscosity modifications 

References

  1. 1.
    McClements DJ (1995) Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol 6:293–299CrossRefGoogle Scholar
  2. 2.
    Leong T, Johansson L, Juliano P, McArthur SL, Manasseh R (2013) Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res 52(47):16555–16576CrossRefGoogle Scholar
  3. 3.
    Ashokkumar M, Mason TJ (2007) Sonochemistry. In: Kirk R, Othmer D (eds) Encyclopedia of chemical technology. John Wiley & Sons, NYGoogle Scholar
  4. 4.
    Chandrapala J, Augustin M, McKinnon I, Udabage P (2011) Effects of pH, calcium complexing agents and milk solids concentration on formation of soluble protein aggregates in heated reconstituted skim milk. Int Dairy J 20:777–784CrossRefGoogle Scholar
  5. 5.
    Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing: food quality assurance and food safety. Trends Food Sci Technol 26:88–98CrossRefGoogle Scholar
  6. 6.
    Cameron M, McMaster LD, Britz TJ (2009) Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci Technol 89:83–98CrossRefGoogle Scholar
  7. 7.
    Villamiel M, de Jong P (2000) Influence of high intensity ultrasound and heat treatment in continuous flow on fat, protein and native enzymes of milk. J Agric Food Chem 48:472–478CrossRefGoogle Scholar
  8. 8.
    D’amico D, Silk TM, Wu J, Guo M (2006) Inactivation of microorganisms in milk and apple cider treated with ultrasound. J Food Prot 69:556–563Google Scholar
  9. 9.
    Juraga E, Salamon BS, Herceg Z (2011) Application of high intensity ultrasound treatment on enterobacteria count in milk. Mljekarstvo 61:125–134Google Scholar
  10. 10.
    Earnshaw RG (1998) Ultrasound: a new opportunity for food preservation. In: Povey MJW, Mason TJ (eds) Ultrasound in food processing. Blackie Academic & Professional, London, pp 183–192Google Scholar
  11. 11.
    Zenker M, Heinz V, Knorr D (2003) Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. J Food Prot 66(9):1642–1649Google Scholar
  12. 12.
    Gera N, Doores S (2011) Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. J Food Sci 76:M111–M119CrossRefGoogle Scholar
  13. 13.
    Bermúdez-Aguirre D, Barbosa-Cánovas GV (2008) Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermosonication. Innov Food Sci Emerg Technol 9:176–185CrossRefGoogle Scholar
  14. 14.
    Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV (2010) Processing of soft Hispanic cheese using thermosonicated milk: a study of physicochemical characteristics and storage life. J Food Sci 75:5548–5558CrossRefGoogle Scholar
  15. 15.
    Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV, Mawson R, Versteeg K (2009) Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermosonication treatments. J Food Qual 32:283–302CrossRefGoogle Scholar
  16. 16.
    Adekunte A, Tiwari BK, Scannell A, Cullen PJ, O’Donnell C (2010) Modelling of yeast inactivation in sonicated tomato juice. Int J Food Microbiol 137:116–120CrossRefGoogle Scholar
  17. 17.
    Garcia ML, Burgos J, Sanz B, Ordonez JA (1989) Effect of heat and ultrasonic waves on the survival of two strains of Bacillus Subtilis. J Appl Bacteriol 67:619–628Google Scholar
  18. 18.
    Ordonoz JA, Aguilera MP, Garcia ML, Sanz B (1987) Effect of combined ultrasonic and heat treatment on the survival of a strain of Staphylococcus Aureus. J Dairy Res 54:61–67CrossRefGoogle Scholar
  19. 19.
    Wringley D, Llorca N (1992) Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatments. J Food Prot 55(9):678–680Google Scholar
  20. 20.
    Villamiel M, Hamersveld V, De Jong J (1999) Review: effects of ultrasound processing on the quality of dairy products. Milchwissenschaft 54:69–73Google Scholar
  21. 21.
    Noci F, Walking-Ribeiro M, Cronin D, Morgan DJ, Lyng JG (2009) Effect of thermosonication, Pulsed electric field and their combination on inactivation of L. innocua in milk. Int Dairy J 19:30–35CrossRefGoogle Scholar
  22. 22.
    Gabriel AA (2014) Inactivation of L. monocytogenes in milk by multifrequency power ultrasound. J Food Process Preserv. doi:10.1111/jfpp.12295Google Scholar
  23. 23.
    Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV (2011) Ultrasound applications in food processing. In: Feng H, Barbosa-Canovas GV, Weis J (eds) Ultrasound technologies for food and bioprocessing. Springer, Science+Business Media, Germany. pp 65–105Google Scholar
  24. 24.
    Pagan R, Manas P, Alvarez I, Condon S (1999) Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiol 16:139–148CrossRefGoogle Scholar
  25. 25.
    Gao S, Lewis GD, Ashokkumar M, Hemar Y (2014) Inactivation of microorganisms by low frequency and high power ultrasound. A simple model for the inactivation mechanism. Ultrason Sonochem 21(1):446–453CrossRefGoogle Scholar
  26. 26.
    Deghani MH (2005) Effectiveness of ultrasound on the destruction of E. Coli. Am J Environ Sci 1(3):187–189CrossRefGoogle Scholar
  27. 27.
    Raso J, Palop A, Condon S (1998) Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J Appl Microbiol 85:849–854CrossRefGoogle Scholar
  28. 28.
    Bermudez-Aguirre D, Barbosa-Canovas GV (2008) Scanning electron microscopy of thermo-sonicated Listeria Innocua cells. In: Gutierrez Lopez GF, Weltichanes J, Parada Arias E (eds) Food engineering integrated approaches. Springer, NY. pp 287–294Google Scholar
  29. 29.
    Knorr D, Zenker M, Heinz V, Lee D (2004) Application and potential of ultrasonics in food processing. Trends Food Sci Technol 15:261–266CrossRefGoogle Scholar
  30. 30.
    Bermudez-Aguirre D, Mawson R, Barbosa-Canovas GV (2008) Microstructure of fat globules in whole milk after thermosonication treatment. J Food Sci 73(7):E325–E332CrossRefGoogle Scholar
  31. 31.
    Herceg Z, Jambrak AR, Celas V, Thagard SM (2012) The effect of high intensity ultrasound treatment on the amount of S. aureus and E. coli in milk. Food Technol Biotechnol 50:46–52Google Scholar
  32. 32.
    Vercet A, Lopez P, Burgos J (1997) Inactivation of heat-resistant lipase and protease from Pseudomonas fluorescens by manothermosonication. J Dairy Sci 80:29–36CrossRefGoogle Scholar
  33. 33.
    Vercet A, Burgos J, Crelier S, Lopez-Buesa P (2001) Inactivation of proteases and lipases by ultrasound. Innov Food Sci Emerg Technol 2:139–150CrossRefGoogle Scholar
  34. 34.
    Raso J, Pagán R, Condón S, Sala FJ (1998) Influence of temperature on the lethality of ultrasound. Appl Environ Microbiol 64:465–471Google Scholar
  35. 35.
    Sala FJ, Burgos J, Condon S, Lopez P, Raso J (1995) Effect of heat and ultrasound on micro-organisms and enzymes. In: Gould GW (ed) New methods of food preservation. Blackie Academic & Professional, London, pp 176–204CrossRefGoogle Scholar
  36. 36.
    Ertugay MF, Yuksel Y, Sengul M (2003) The effect of ultrasound on lactoperoxidase and alkaline phosphatase enzymes from milk. Milchwissenschaft 58:593–595Google Scholar
  37. 37.
    Mawson R, Gamage M, Terefe MS, Knoerzer K (2011) Ultrasound in enzyme activation and inactivation. In: Feng H, Barbosa-Cánovas GV, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, Science+Business Media, Germany. pp 369–404Google Scholar
  38. 38.
    Tian ZM, Wan MX, Wang SP, Kang JQ (2004) Effects of ultrasound and additives on the function and structure of trypsin. Ultrason Sonochem 11(16):399–404Google Scholar
  39. 39.
    Ozbek B, Ulgen KO (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043CrossRefGoogle Scholar
  40. 40.
    Lopez P, Sala FJ, Fuente JL, Condon S, Raso J, Burgos J (1994) Inactivation of peroxidase, lipoxygenase and polyphenol oxidase by manothermosonication. J Agric Food Chem 42:252–256CrossRefGoogle Scholar
  41. 41.
    Lopez P, Burgos J (1995) Lipoxygenase inactivation by manothermosonication: effects of sonication parameters, pH, KCl, sugar, glycerol and enzyme concentration. J Agric Food Chem 43:620–625CrossRefGoogle Scholar
  42. 42.
    Ertugay MF, Sengul M, Sengul M (2004) Effect of ultrasound treatment on milk homogenization and particle size distribution of fat. Turk J Vet Anim Sci 28:303–308Google Scholar
  43. 43.
    Bosiljkov T, Tripalo B, Brincic M, Jezek D, Karlovic S, Jagust I (2011) Influence of high intensity ultrasound with different probe diameter on the degree of homogenization (variance) and physical properties of cow milk. Afr J Biotechnol 10:34–41Google Scholar
  44. 44.
    Al-Hilphy ARS, Niamak AK, Al-Temimi AB (2012) Effect of ultrasonic treatment on buffalo milk homogenization and numbers of bacteria. Int J Food Sci Nutr Eng 2:113–118CrossRefGoogle Scholar
  45. 45.
    Jafari SM (2007) Production of submicron emulsions by ultrasound and microfluidisation techniques. J Food Sci 82:478–488Google Scholar
  46. 46.
    Koh LLA, Chandrapala J, Zisu B, Martin GJ, Kentish S, Ashokkumar M (2014) A comparison of the effectiveness of sonication, high shear mixing and homogenization on improving the heat stability of whey proteins solutions. Food Bioprocess Technol 7:556–566CrossRefGoogle Scholar
  47. 47.
    Michalski MC, Michel F, Geneste C (2002) Appearance of submicron particles in the milk fat globule size distribution upon mechanical treatments. Lait 82:193–208CrossRefGoogle Scholar
  48. 48.
    Fox k, Holsinger VH, Caha J, Palansch MJ (1960) Formation of a fat-protein complex in milk by homogenization. J Dairy Sci 43:1396–1406CrossRefGoogle Scholar
  49. 49.
    Vijaykumar S (2012) Effects of thermosonication on proteases and characteristics of milk and cream. MSc thesis, Iowa State UniversityGoogle Scholar
  50. 50.
    Juliano P, Kutter A, Cheng LJ, Swiergon P, Mawson R, Augustin M (2011) Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrason Sonochem 18:963–973CrossRefGoogle Scholar
  51. 51.
    Juliano P, Temmel S, Rout M, Swiergon P, Mawson R, Knoerzer K (2012) Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies. Ultrason Sonochem 20:52–62CrossRefGoogle Scholar
  52. 52.
    Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R (2014) Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrason Sonochem 21:1289–1298CrossRefGoogle Scholar
  53. 53.
    Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R (2014) Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrason Sonochem 21:2092–2098CrossRefGoogle Scholar
  54. 54.
    Juliano P, Torkamani AE, Leong T, Kolb V, Watkins P, Ailouni S, Singh TK (2014) Lipid oxidation volatiles absent in milk after selected ultrasound processing. Ultrason Sonochem 21:2165–2175CrossRefGoogle Scholar
  55. 55.
    Torkamani AE, Juliano P, Ailouni S, Singh TK (2014) Impact of ultrasound treatment on lipid oxidation of Cheddar cheese whey. Ultrason Sonochem 21:951–957CrossRefGoogle Scholar
  56. 56.
    Leong T, Wooster T, Kentish S, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16(6):721–727CrossRefGoogle Scholar
  57. 57.
    Pandit AB, Joshi JB (1993) Hydrolysis of fatty oils: effect of cavitation. Chem Eng sci 48:3440–3442CrossRefGoogle Scholar
  58. 58.
    Abismail B, Conselier JP, Wilhelm AM, Delma H, Gourdon C (2000) Emulsification processes: online study by multiple light scattering measurements. Ultrason Sonochem 7:187–192CrossRefGoogle Scholar
  59. 59.
    Juang R, Lin K (2004) Ultrasound assisted production of w/o emulsions on liquid surfactant membrane processes. Colloids Surf A Physiochem Eng Asp 238:43–49CrossRefGoogle Scholar
  60. 60.
    Behreud O, Schubert H (2001) Influence of hydrostatic pressure and gas content on continues ultrasound emulsification. Ultrason Sonochem 8:271–276CrossRefGoogle Scholar
  61. 61.
    Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249CrossRefGoogle Scholar
  62. 62.
    Shanmugam A, Ashokkumar M (2014) Ultrasonic preparation of stable flax seed oil emulsions in dairy systems–physicochemical characterization. Food Hyd 39:151–162CrossRefGoogle Scholar
  63. 63.
    Lamminen MO, Walker HW, Weavers LK (2004) Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J Memb Sci 237:213–223CrossRefGoogle Scholar
  64. 64.
    Muthukumaran S, Kentish S, Stevens GW, Ashokkumar M, Mawson R (2007) The application of ultrasound to dairy ultrafiltration: the influence of operation conditions. J Food Eng 81:364–373CrossRefGoogle Scholar
  65. 65.
    Muthukumaran S, Kentish S, Lalchandani S, Ashokkumar M, Mawson R, Stevens GW, Grieser F (2005) The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrason Sonochem 12:29–35CrossRefGoogle Scholar
  66. 66.
    Muthukumaran S, Kentish S, Ashokkumar M, Stevens GW (2005) Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. J Memb Sci 258:106–114CrossRefGoogle Scholar
  67. 67.
    Hotrum NE, de Jong P, Akkerman JC (2015) Pilot scale ultrasound enabled plate heat exchanger-its design and potential to prevent biofouling. J Food Eng 153:81–88CrossRefGoogle Scholar
  68. 68.
    Koh LL, Nguyen HH, Chandrapala J, Zisu B, Ashokkumar M, Kentish S (2014) The use of ultrasonic feed pre-treatment to reduce membrane fouling in whey ultrafiltration. J Memb Sci 453:230–239CrossRefGoogle Scholar
  69. 69.
    Shahraki MH, Maskooki A, Faezian A (2014) Effect of various sonication modes on permeation flux in cross flow ultrafiltration membranes. J Environ Chem Eng 2:2289–2294CrossRefGoogle Scholar
  70. 70.
    Abel M, Kiss ZL, Beszedes S, Hodor C, Keszthelyi-szabo G, Laszlo Z (2015) Ultrasonically assisted ultrafiltration of whey solution. J Food Proc Eng. doi:10.1111/jfpe.12177Google Scholar
  71. 71.
    Uluko H, Zhang S, Liu L, Li H, Cui W, Xue H, Zhao L, Sun Y, Lu J, Lu J (2014) Pilot scale membrane fractionation of ACE inhibitory and antioxidative peptides from ultrasound pretreated milk protein concentrate hydroxylates. J Func Foods 7:350–361CrossRefGoogle Scholar
  72. 72.
    Mirzaie A, Mohammadi T (2012) Effect of ultrasonic waves on flux enhancement in microfiltration of milk. J Food Eng 108(1):77–86CrossRefGoogle Scholar
  73. 73.
    Bund RK, Pandit AB (2007) Sonocrystallisation: effect on lactose recovery and crystal habit. Ultrason Sonochem 14:143–152CrossRefGoogle Scholar
  74. 74.
    Deora NS, Misra NN, Deswal A, Mishra HN, Cillen PJ, Tiwari BK (2013) Ultrasound improved crystallization in food processing. Food Eng Rev 5:36–44CrossRefGoogle Scholar
  75. 75.
    Bund RK, Pandit AB (2007) Rapid lactose recovery from paneer whey using sonocrystallization: a process optimization. Chem Eng Process 46:846–850CrossRefGoogle Scholar
  76. 76.
    Guo Z, Zhang M, Li H, Wnag J, Kougoulos E (2005) Effect of ultrasound on anti-solvent crystallization process. J Crys Growth 273:555–563CrossRefGoogle Scholar
  77. 77.
    Hem SL (1967) The effect of ultrasonic vibrations on crystallization processes. Ultrasonics 5(4):202–207CrossRefGoogle Scholar
  78. 78.
    Kickling R (1965) Nucleation of freezing by cavity collapse and its relation to cavitation damage. Nature 206:915–917CrossRefGoogle Scholar
  79. 79.
    Patel SR, Murthy VP (2009) Ultrasound assisted crystallization for the recovery of lactose in an anti solvent acetone. Crst Res Tech 44:889–896CrossRefGoogle Scholar
  80. 80.
    Patel SR, Murthy VP (2011) Waste valorisation: recovery of lactose from partially deprotonated whey by using acetone as antisolvent. Dairy Sci Tech 91:53–63Google Scholar
  81. 81.
    Zisu B, Sciberras M, Jayasena V, Weeks M, Palmer M, Dincer T (2014) Sonocrystallisation of lactose in concentrated whey. Ultrason Sonochem 21(6):2117–2121CrossRefGoogle Scholar
  82. 82.
    Martini S, Suzuki AH, Hartel RW (2008) Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. J Am Oil Chem Soc 85:621–628CrossRefGoogle Scholar
  83. 83.
    Sizuki AH, Lee J, Padilla SG, Martini S (2010) Altering functional properties of fats using power ultrasound. J Food Sci 75:208–214CrossRefGoogle Scholar
  84. 84.
    Reiner J, Noci F, Cronin DA, Morgan DJ, Lyng G (2009) The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chem 114:905–911CrossRefGoogle Scholar
  85. 85.
    Patrick M, Blindt R, Janssen J (2004) The effect of ultrasonic intensity on the crystal structure of palm oil. Ultrason Sonochem 11:251–255CrossRefGoogle Scholar
  86. 86.
    Acton E, Morris GJ (1992) Methods and apparatus for the control of solidification in liquids. US Patent WO99/20420Google Scholar
  87. 87.
    Chow R, Blindt R, Chivers R, Povey M (2003) The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics 41(8):595–604CrossRefGoogle Scholar
  88. 88.
    Mortazavi A, Tabatabai F (2008) Study of ice cream freezing process after treatment with ultrasound. World Appl Sci J 4(2):188–190Google Scholar
  89. 89.
    Havea P (2006) Protein interactions in milk protein concentrate powders. Int Dairy J 16:415–422CrossRefGoogle Scholar
  90. 90.
    Udabage P, Puvanenthiran A, Yoo J, Versteeg C, Augustin MA (2012) Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment. J Dairy Res 79:76–83CrossRefGoogle Scholar
  91. 91.
    Augustin MA, Sanguansri L, Williams R, Andrews H (2012) High shear treatment of concentrates and drying conditions influence the solubility of milk protein concentrate powders. J Dairy Res 79:459–468CrossRefGoogle Scholar
  92. 92.
    Yanjun S, Jianhang C, Shuwen Z, Hongjuan L, Jing L, Lu L, Uluko H et al (2014) Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. J Food Eng 124:11–18CrossRefGoogle Scholar
  93. 93.
    Carr A (2002) Monovalent salt enhances solubility of milk protein concentrate. In: New Zealand Dairy Board, Bhaskar NZ, Ganugapati Vijaya; Ram, Satyendra). Application: WO, 2002, pp 33Google Scholar
  94. 94.
    Schuck P, Davenel A, Mariette F, Briard V, Mejean S, Piot M (2002) Rehydration of casein powders: effects of added mineral salts and salt addition methods on water transfer. Int Dairy J 12:51–57CrossRefGoogle Scholar
  95. 95.
    McCarthy NA, Kelly PM, Maher PG, Fenelon MA (2014) Dissolution of milk protein concentrates by ultrasonication. J Food Eng 126:142–148CrossRefGoogle Scholar
  96. 96.
    Chandrapala J, Martin GJ, Kentish S, Ashokkuamr M (2014) Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. Ultrason Sonochem 21:1658–1665CrossRefGoogle Scholar
  97. 97.
    Ashokkumar M, Lee J, Kentish SE, Grieser F (2004) Bubbles in an acoustic field: an overview. Ultrason Sonochem 14:470–475CrossRefGoogle Scholar
  98. 98.
    Ashokkumar M, Kentish S, Lee J, Zisu B, Palmer M, Augustin M (2009a) Processing of dairy ingredients by ultrasonication. PCT Int Appl WO2009/079691A1Google Scholar
  99. 99.
    Ashokkumar M, Lee J, Zisu B, Bhaskarcharya R, Kentish S (2009) Sonication increases the heat stability of whey proteins. J Dairy Sci 92:5353–5356CrossRefGoogle Scholar
  100. 100.
    Zisu B, Bhaskarcharya R, Ashokkumar M, Kentish S (2010) Ultrasonics processing of dairy systems in large scale reactors. Ultrason Sonochem 17:1075–1087CrossRefGoogle Scholar
  101. 101.
    Devi S, Ashokkumar M, Grieser F (2005) The influence of acoustic power on multibubble sonoluminescence in aqueous solution containing organic solutes. J Phys Chem B 109:20044–20050CrossRefGoogle Scholar
  102. 102.
    Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M (2012) A possible mechanism to understand the ultrasound induced heat stability of whey protein concentrates. International nonthermal workshop, MelbourneGoogle Scholar
  103. 103.
    Kresic G, Lelas V, Jambrak AR, Herceg Z, Brncic SR (2008) Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins. J Food Eng 87:64–73CrossRefGoogle Scholar
  104. 104.
    Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JA, Lepock JR, Meiering EM (2004) Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci 13:3017–3027CrossRefGoogle Scholar
  105. 105.
    Chandrapala J, Zisu B, Palmer M, Kentish SE, Ashokkumar M (2011) Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason Sonochem 18:951–957CrossRefGoogle Scholar
  106. 106.
    Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2012) The effects of high‐intensity ultrasound on the structural and functional properties of α‐Lactalbumin, β‐Lactoglobulin and their mixtures. Food Res Int 48:940–943CrossRefGoogle Scholar
  107. 107.
    Martin GJ, Williams R, Dunstan D (2007) Comparison of casein micelles in raw and reconstituted skim milk. J Dairy Sci 90:4543–4551CrossRefGoogle Scholar
  108. 108.
    Madadlou A, Mousavi ME, Emam-Djomek Z, Ehsani M, Sheehan D (2009) Sonodisruption of reassembled casein micelles at different pH values. Ultrason Sonochem 16:644–648CrossRefGoogle Scholar
  109. 109.
    Mounsey JJ, O’Kennedy BT, Kelly PM (2005) Influence of transglutaminase treatment on properties of milk and products made therefrom. Lait 85:405–418CrossRefGoogle Scholar
  110. 110.
    Nguyen NH, Anema SG (2010) Effect of ultrasonication on the properties of skim milk used in the formation of acid gels. Innov Food Sci Emerg Technol 11:616–622CrossRefGoogle Scholar
  111. 111.
    Chandrapala J, Martin GJ, Zisu B, Kentish S, Ashokkuamr M (2012) The effect of ultrasound on casein micelle integrity. J Dairy Sci 95:6882–6890CrossRefGoogle Scholar
  112. 112.
    Shanmugam A, Chandrapala J, Ashokkumar M (2012) The effect of ultrasound on the physical and functional properties of skim milk. Innov Food Sci Emerg Technol 16:251–258CrossRefGoogle Scholar
  113. 113.
    Liu Z, Juliano P, Williams R, Niere J, Augustin M (2014) Ultrasound effects on assembly of casein micelles in reconstituted skim milk. J Dairy Res 81(2):146–155CrossRefGoogle Scholar
  114. 114.
    Anema SG, Klostermeyer H (1997) Heat induced, pH dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100°C. J Agric Food Chem 45:1108–1115CrossRefGoogle Scholar
  115. 115.
    Snoeren THM, Brinkhuis JA, Damman AJ, Klok HJ (1982) The viscosity of skim-milk concentrates. Nether Milk Dairy J 36:305–316Google Scholar
  116. 116.
    Zisu B, Schleyer M, Chandrapala J (2012) Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk. Int Dairy J 1–3Google Scholar
  117. 117.
    Vercet A, Oria P, Quina P, Crelier S, Lopez P (2002) Rheological properties of yoghurt made with milk submitted and manothermosonication. J Agric Food Chem 50(21):6165–6171Google Scholar
  118. 118.
    Riener J, Noci F, Cronin DA, Morgan DJ, Lyng G (2010) A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chem 119:1108–1110CrossRefGoogle Scholar
  119. 119.
    Wu H, Hulbert GJ, Mount JR (2001) Effects of ultrasound on milk homogenization and fermentation with yoghurt starter. Innov Food Sci Emerg Technol 1:211–218CrossRefGoogle Scholar
  120. 120.
    Liu Z, Juliano P, Williams R, Niere J, Augustin M (2014) Ultrasound improves the renneting properties of milk. Ultrason Sonochem 21(6):2131–2137CrossRefGoogle Scholar
  121. 121.
    Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2013) Influence of ultrasound on the chemically induced gelation of micellar casein systems. J Dairy Res 80(2):138–143Google Scholar
  122. 122.
    Zisu B, Lee J, Chandrapala J, Bhaskarcharya R, Palmer M, Kentish S, Ashokkumar M (2011) Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. J Dairy Res 78:226–232CrossRefGoogle Scholar
  123. 123.
    Jambrak AR, Mason T, Lelas V, Herceg Z, Hereg L (2008) Effect of ultrasound treatment on solubility and foaming properties of whey protein dispersion. J Food Eng 86:281–287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Advanced Food Systems Unit, College of Health and BiomedicineVictoria UniversityWerribeeAustralia

Personalised recommendations