Skip to main content

Ultrasonic Modification of Micelle Nanostructures

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

The tremendous attention given to micelles in recent technological advancements and industries is due to its amazingly stable and flexible physicochemical properties exhibited upon exposure to different stimuli. A concise review of micelle structures and the effects of various stimuli on the structural properties of micelles with a particular focus on the effect of ultrasound are provided. While the use of conventional stimuli such as temperature, shear, etc., for controlling micelle structures is widely reported, the use of ultrasound as a stimulus has not been studied extensively. For this reason, a detailed discussion on the possibility of designing a variety of micelle nanostructures using ultrasound is provided. Using ultrasound as a stimulus is an advantage as it eliminates the need for adding external chemicals to the micellar system and the experimental parameters could be easily controlled. A case study of using cetyltrimethylammonium salicylate (CTASal) prepared from ion exchange process of equimolar mixture of cetyltrimethylammonium bromide (CTABr) and sodium salicylate (NaSal) is used in order to evaluate the efficiency of ultrasonics on controlling the micelles’ aggregational structures. Further experiments and discussion imply that the transformation is mainly driven by the physical effect generated from sonication. Evidence from cryo-TEM indicates that the structural transformation took place according to the reptation and reaction Model proposed before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schryver SB et al (1913) Discussion. Trans Faraday Soc 9:93–107. doi:10.1039/TF9130900093

    Article  CAS  Google Scholar 

  2. Croce V, Cosgrove T, Maitland G, Hughes T, Karlsson G (2003) Rheology, cryogenic transmission electron spectroscopy, and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions. Langmuir 19:8536–8541. doi:10.1021/la0345800

    Article  CAS  Google Scholar 

  3. Khatory A et al (1993) Entangled versus multiconnected network of wormlike micelles. Langmuir 9:933–939. doi:10.1021/la00028a010

    Article  CAS  Google Scholar 

  4. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970. doi:10.1039/B705775J

    Article  CAS  Google Scholar 

  5. Guo L, Colby RH, Lin MY, Dado GP (2001) Micellar structure changes in aqueous mixtures of nonionic surfactants. J Rheol 45:1223–1243. doi:10.1122/1.1389315

    Article  CAS  Google Scholar 

  6. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901. doi:10.1016/j.ccr.2005.01.030

    Article  Google Scholar 

  7. Vasudevan M, Shen A, Khomami B, Sureshkumar R (2008) Self-similar shear thickening behavior in CTAB/NaSal surfactant solutions. J Rheol 52:527–550. doi:10.1122/1.2833594

    Article  CAS  Google Scholar 

  8. Yusof NSM, Khan MN (2010) Determination of an ion exchange constant by the use of a kinetic probe: a new semiempirical kinetic approach involving the effects of 3-F- and 4-F-substituted benzoates on the rate of piperidinolysis of anionic phenyl salicylate in aqueous cationic micelles. Langmuir 26:10627–10635. doi:10.1021/la100863q

    Article  CAS  Google Scholar 

  9. Khan MN, Ismail E (2009) Kinetic evidence for the occurrence of independent ion-exchange processes in the cationic micellar-mediated reaction of piperidine with anionic phenyl salicylate. J Phys Chem A 113:6484–6488. doi:10.1021/jp902886z

    Article  CAS  Google Scholar 

  10. Kim W-J, Yang S-M (2000) Effects of sodium salicylate on the microstructure of an aqueous micellar solution and its rheological responses. J Colloid Interface Sci 232:225–234. doi:10.1006/jcis.2000.7207

    Article  CAS  Google Scholar 

  11. Magid LJ, Gee JC, Talmon Y (1990) A cryogenic transmission electron microscopy study of counterion effects on hexadecyltrimethylammonium dichlorobenzoate micelles. Langmuir 6:1609–1613. doi:10.1021/la00100a015

    Article  CAS  Google Scholar 

  12. Arleth L, Bergström M, Pedersen JS (2002) Small-angle neutron scattering study of the growth behavior, flexibility, and intermicellar interactions of wormlike SDS micelles in NaBr aqueous solutions. Langmuir 18:5343–5353. doi:10.1021/la015693r

    Article  CAS  Google Scholar 

  13. Magid LJ, Li Z, Butler PD (2000) Flexibility of elongated sodium dodecyl sulfate micelles in aqueous sodium chloride: a small-angle neutron scattering study. Langmuir 16:10028–10036. doi:10.1021/la0006216

    Article  CAS  Google Scholar 

  14. Nakahara Y, Kida T, Nakatsuji Y, Akashi M (2005) New fluorescence method for the determination of the critical micelle concentration by photosensitive monoazacryptand derivatives. Langmuir 21:6688–6695. doi:10.1021/la050206j

    Article  CAS  Google Scholar 

  15. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869

    Article  CAS  Google Scholar 

  16. Cates ME (1990) Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J Phys Chem 94:371–375. doi:10.1021/j100364a063

    Article  CAS  Google Scholar 

  17. Magid LJ (1998) The surfactant−polyelectrolyte analogy. J Phys Chem B 102:4064–4074. doi:10.1021/jp9730961

    Article  CAS  Google Scholar 

  18. Davies TS, Ketner AM, Raghavan SR (2006) Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 128:6669–6675. doi:10.1021/ja060021e

    Article  CAS  Google Scholar 

  19. Koehler RD, Raghavan SR, Kaler EW (2000) Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J Phys Chem B 104:11035–11044. doi:10.1021/jp0018899

    Article  CAS  Google Scholar 

  20. Schubert BA, Kaler EW, Wagner NJ (2003) The microstructure and rheology of mixed cationic/anionic wormlike micelles. Langmuir 19:4079–4089. doi:10.1021/la020821c

    Article  CAS  Google Scholar 

  21. Candau SJ, Hirsch E, Zana R (1985) Light scattering investigations of the behavior of semidilute aqueous micellar solutions of cetyltrimethylammonium bromide: analogy with semidilute polymer solutions. J Colloid Interface Sci 105:521–528. doi:10.1016/0021-9797(85)90327-3

    Article  CAS  Google Scholar 

  22. Magid LJ, Han Z, Li Z, Butler PD (2000) Tuning microstructure of cationic micelles on multiple length scales: the role of electrostatics and specific ion binding. Langmuir 16:149–156. doi:10.1021/la990686c

    Article  CAS  Google Scholar 

  23. Raghavan SR, Kaler EW (2000) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17:300–306. doi:10.1021/la0007933

    Article  Google Scholar 

  24. Khatory A, Lequeux F, Kern F, Candau SJ (1993) Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content. Langmuir 9:1456–1464. doi:10.1021/la00030a005

    Article  CAS  Google Scholar 

  25. Clausen TM et al (1992) Viscoelastic micellar solutions: microscopy and rheology. J Phys Chem 96:474–484. doi:10.1021/j100180a086

    Article  CAS  Google Scholar 

  26. Gravsholt S (1976) Viscoelasticity in highly dilute aqueous solutions of pure cationic detergents. J Colloid Interface Sci 57:575–577. doi:10.1016/0021-9797(76)90236-8

    Article  CAS  Google Scholar 

  27. Hassan PA et al (1996) Vesicle to micelle transition: rheological investigations. Langmuir 12:4350–4357

    Article  CAS  Google Scholar 

  28. Mendes E et al (1997) Shear-induced vesicle to wormlike micelle transition. J Phys Chem B 101:2256–2258. doi:10.1021/jp962790y

    Article  CAS  Google Scholar 

  29. Mahmood ME, Al-Koofee DAF (2013) Effect of temperature changes on critical micelle concentration for tween series surfactant. Glob J Sci Front Res Chem 13:1–7

    Google Scholar 

  30. Mendes E et al (1997) Shear-induced vesicle to wormlike micelle transition. J Phys Chem B 101:2256–2258

    Article  CAS  Google Scholar 

  31. Prötzl B, Springer J (1997) Light scattering experiments on shear induced structures of micellar solutions. J Colloid Interface Sci 190:327–333. doi:10.1006/jcis.1997.4866

    Article  Google Scholar 

  32. Chen S, Rothstein JP (2004) Flow of a wormlike micelle solution past a falling sphere. J Non-Newtonian Fluid Mech 116:205–234. doi:10.1016/j.jnnfm.2003.08.005

    Article  CAS  Google Scholar 

  33. Cressely R, Hartmann V (1998) Rheological behaviour and shear thickening exhibited by aqueous CTAB micellar solutions. Eur Phys J B 6:57–62. doi:10.1007/s100510050526

    Article  CAS  Google Scholar 

  34. Zheng Y et al (2000) Cryo-TEM imaging the flow-induced transition from vesicles to threadlike micelles. J Phys Chem B 104:5263–5271. doi:10.1021/jp0002998

    Article  CAS  Google Scholar 

  35. Wang J, Pelletier M, Zhang H, Xia H, Zhao Y (2009) High-frequency ultrasound-responsive block copolymer micelle. Langmuir 25:13201–13205. doi:10.1021/la9018794

    Article  CAS  Google Scholar 

  36. Pitt WG, Husseini GA, Staples BJ (2004) Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv 1:37–56. doi:10.1517/17425247.1.1.37

    Article  CAS  Google Scholar 

  37. Kost J, Leong K, Langer R (1989) Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci 86:7663–7666

    Article  CAS  Google Scholar 

  38. Ghosh S et al (2013) Spontaneous transition of micelle–vesicle–micelle in a mixture of cationic surfactant and anionic surfactant-like ionic liquid: a pure nonlipid small unilamellar vesicular template used for solvent and rotational relaxation study. Langmuir 29:10066–10076. doi:10.1021/la402053a

    Article  CAS  Google Scholar 

  39. Miskolczy Z, Sebők-Nagy K, Biczók L, Göktürk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300. doi:10.1016/j.cplett.2004.10.127

    Article  CAS  Google Scholar 

  40. Silva BFB, Marques EF (2005) Thermotropic behavior of asymmetric chain length catanionic surfactants: the influence of the polar head group. J Colloid Interface Sci 290:267–274. doi:10.1016/j.jcis.2005.04.012

    Article  CAS  Google Scholar 

  41. Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JA (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 245:1371–1374

    Article  CAS  Google Scholar 

  42. Yatcilla MT et al (1996) Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS). J Phys Chem 100:5874–5879. doi:10.1021/jp952425r

    Article  CAS  Google Scholar 

  43. Marques EF (2000) Size and stability of catanionic vesicles: effects of formation path, sonication, and aging. Langmuir 16:4798–4807. doi:10.1021/la9908135

    Article  CAS  Google Scholar 

  44. Yusof NSM, Ashokkumar M (2013) Ultrasound-induced formation of high and low viscoelastic nanostructures of micelles. Soft Matter 9:1997–2002. doi:10.1039/C2SM27423J

    Article  CAS  Google Scholar 

  45. Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296. doi:10.1021/ma00175a038

    Article  CAS  Google Scholar 

  46. Messager R, Ott A, Chatenay D, Urbach W, Langevin D (1988) Are giant micelles living polymers? Phys Rev Lett 60:1410–1413

    Article  CAS  Google Scholar 

  47. de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579. doi:10.1063/1.1675789

    Article  Google Scholar 

  48. Leger L, Hervet H, Rondelez F (1981) Reptation in entangled polymer solutions by forced Rayleigh light scattering. Macromolecules 14:1732–1738

    Article  CAS  Google Scholar 

  49. Tanford C (1974) Theory of micelle formation in aqueous solutions. J Phys Chem 78:2469–2479. doi:10.1021/j100617a012

    Article  CAS  Google Scholar 

  50. Turner MS, Marques C, Cates ME (1993) Dynamics of wormlike micelles: the “bond-interchange” reaction scheme. Langmuir 9:695–701. doi:10.1021/la00027a015

    Article  CAS  Google Scholar 

  51. Candau SJ, Hirsch E, Zana R, Adam M (1988) Network properties of semidilute aqueous KBr solutions of cetyltrimethylammonium bromide. J Colloid Interface Sci 122:430–440. doi:10.1016/0021-9797(88)90377-3

    Article  CAS  Google Scholar 

  52. Wunderlich I, Hoffmann H, Rehage H (1987) Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta 26:532–542. doi:10.1007/BF01333737

    Article  CAS  Google Scholar 

  53. Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92:4712–4719. doi:10.1021/j100327a031

    Article  CAS  Google Scholar 

  54. Leger L, Hervet H, Rondelez F (1981) Reptation in entangled polymer solutions by forced Rayleigh light scattering. Macromolecules 14:1732–1738. doi:10.1021/ma50007a023

    Article  CAS  Google Scholar 

  55. Ashokkumar M, Mason TJ (2000) In: Kirk-Othmer encyclopedia of chemical technology. Wiley

    Google Scholar 

  56. Leighton T (1994) Academic Press, London

    Google Scholar 

  57. Tho P, Manasseh R, Ooi A (2007) Cavitation microstreaming patterns in single and multiple bubble systems. J Fluid Mech 576:191–233. doi:10.1017/S0022112006004393

    Article  Google Scholar 

  58. Shoh A (1975) Industrial applications of ultrasound – a review I. High-power ultrasound. IEEE Trans Sonics Ultrason 22:60–70. doi:10.1109/T-SU.1975.30780

    Article  Google Scholar 

  59. Patist A, Jha BK, Oh S g, Shah DO (1999) Importance of micellar relaxation time on detergent properties. J Surfactant Deterg 2:317–324. doi:10.1007/s11743-999-0083-6

    Article  CAS  Google Scholar 

  60. Ziserman L, Abezgauz L, Ramon O, Raghavan SR, Danino D (2009) Origins of the viscosity peak in wormlike micellar solutions. 1. mixed catanionic surfactants. A cryo-transmission electron microscopy study. Langmuir 25:10483–10489. doi:10.1021/la901189k

    Article  CAS  Google Scholar 

  61. Mohanty A, Patra T, Dey J (2007) Salt-induced vesicle to micelle transition in aqueous solution of sodium N-(4-n-octyloxybenzoyl)-l-valinate. J Phys Chem B 111:7155–7159. doi:10.1021/jp071312s

    Article  CAS  Google Scholar 

  62. Brotchie A, Grieser F, Ashokkumar M (2009) Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett 102:084302

    Article  Google Scholar 

  63. Ashokkumar M, Maspm TJ (2007) In: Kirk Othmer encyclopedia chemical tenchnology

    Google Scholar 

  64. Yusof NSM, Ashokkumar M (2015) Ultrasonic transformation of micelle structures: effect of frequency and power. Ultrason Sonochem. 24:8–12. doi:10.1016/j.ultsonch.2014.11.003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Saadah Mohd Yusof .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Mohd Yusof, N.S., Ashokkumar, M. (2016). Ultrasonic Modification of Micelle Nanostructures. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_18

Download citation

Publish with us

Policies and ethics