Skip to main content

Neurocognitive Markers of Aging

  • Living reference work entry
  • First Online:
Encyclopedia of Geropsychology
  • 130 Accesses

Synonyms

Cognitive markers; Neurobiological markers; Neurofunctional markers

Definition

Neurocognitive markers correspond to the components of cognition, along with their neurobiological and neurofunctional bases, that exhibit changes along the trajectory of normal aging.

Introduction

The aging of societies and globalization of activities both characterize the twenty-first century. Sustaining active aging, and particularly cognitive health, is one of the leading global public health priorities (WHO 2015). Aging is a dynamic process that spans across the entire life course. In order to distinguish between the normal evolution of cognition across the lifespan and cognitive impairments due to neurodegenerative diseases, it is critical to recognize the different neurocognitive markers in aging. This entry provides a description of those markers at both the functional and structural level, while also addressing the neurofunctional reorganization that occurs and is responsible for the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ansado, J., Monchi, O., Ennabil, N., Deslauriers, J., Jubault, T., Faure, S., & Joanette, Y. (2013). Coping with task demand in aging using neural compensation and neural reserve triggers primarily intra-hemispheric-based neurofunctional reorganization. Neuroscience Research, 75(4), 295–304.

    Article  Google Scholar 

  • Bialystok, E., Craik, F. I., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45(2), 459–464.

    Article  Google Scholar 

  • Brickman, A. M., & Stern, Y. (2009). Aging and memory in humans. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 175–180). Oxford: Academic.

    Chapter  Google Scholar 

  • Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition (3rd ed., pp. 1–54). Mahwah: Erlbaum.

    Google Scholar 

  • Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., … Kramer, A. F. (2007). Training-induced plasticity in older adults: Effects of training on hemispheric asymmetry. Neurobiology of Aging, 28(2), 272–283.

    Google Scholar 

  • Grady, C. L. (2008). Cognitive neuroscience of aging. The Annals of the New York Academy of Sciences, 1124(1), 127–144.

    Article  Google Scholar 

  • Greenlee, M. W., & Sekuler, A. B. (2014). Visual perception and visual cognition in healthy and pathological ageing. Frontiers in Psychology, 5, 348.

    Article  Google Scholar 

  • Hedden, T., & Gabrieli, J. D. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews. Neuroscience, 5(2), 87–96.

    Article  Google Scholar 

  • Jonides, J., Marshuetz, C., Smith, E., Reuter-Lorenz, P., Koeppe, R., & Hartley, A. (2000). Age differences in behavior and PET activation reveal differences in interference resolution in verbal working memory. Journal of Cognitive Neuroscience, 12(1), 188–196.

    Article  Google Scholar 

  • Legault, I., Allard, R., & Faubert, J. (2013). Healthy older observers show equivalent perceptual-cognitive training benefits to young adults for multiple object tracking. Frontiers in Psychology, 4, 323.

    Article  Google Scholar 

  • Madden, D. J. (2007). Aging and visual attention. Current Directions in Psychological Science, 16(2), 70–74.

    Article  Google Scholar 

  • Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173.

    Article  Google Scholar 

  • Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S. (2008). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18(5), 1010–1028.

    Article  Google Scholar 

  • Penke, L., Maniega, S. M., Murray, C., Gow, A. J., Hernández, M. C. V., Clayden, J. D., … Deary, I. J. (2010). A general factor of brain white matter integrity predicts information processing speed in healthy older people. The Journal of Neuroscience, 30(22), 7569–7574.

    Google Scholar 

  • Persson, J., Lustig, C., Nelson, J., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: A link to cognitive control? Journal of Cognitive Neuroscience, 19(6), 1021–1032.

    Article  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., … Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689.

    Google Scholar 

  • Salthouse, T. A. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13(4), 140–144.

    Article  Google Scholar 

  • Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25(5), 625–633.

    Article  Google Scholar 

  • Shafto, M. A., & Tyler, L. K. (2014). Language in the aging brain: The network dynamics of cognitive decline and preservation. Science, 346(6209), 583–587.

    Article  Google Scholar 

  • Shing, Y. L., Werkle-Bergner, M., Brehmer, Y., Müller, V., Li, S. C., & Lindenberger, U. (2010). Episodic memory across the lifespan: The contributions of associative and strategic components. Neuroscience and Biobehavioral Reviews, 34(7), 1080–1091.

    Article  Google Scholar 

  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(03), 448–460.

    Article  Google Scholar 

  • Sullivan, E. V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews, 30(6), 749–761.

    Article  Google Scholar 

  • Thomsen, T., Specht, K., Hammar, Å., Nyttingnes, J., Ersland, L., & Hugdahl, K. (2004). Brain localization of attentional control in different age groups by combining functional and structural MRI. NeuroImage, 22(2), 912–919.

    Article  Google Scholar 

  • Valdois, S., Joanette, Y., Poissant, A., Ska, B., & Dehaut, F. (1990). Heterogeneity in the cognitive profile of normal elderly. Journal of Clinical and Experimental Neuropsychology, 12(4), 587–596.

    Article  Google Scholar 

  • Verhaeghen, P., & Cerella, J. (2002). Aging, executive control, and attention: A review of meta-analyses. Neuroscience and Biobehavioral Reviews, 26(7), 849–857.

    Article  Google Scholar 

  • WHO. (2015). World report on aging and health. Extracted from http://www.who.int/ageing/publications/world-report-2015/en/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Joanette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Dash, T., Joanette, Y. (2016). Neurocognitive Markers of Aging. In: Pachana, N. (eds) Encyclopedia of Geropsychology. Springer, Singapore. https://doi.org/10.1007/978-981-287-080-3_302-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-080-3_302-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-287-080-3

  • eBook Packages: Springer Reference Social SciencesReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics