Encyclopedia of Geropsychology

Living Edition
| Editors: Nancy A. Pachana

Neurocognitive Markers of Aging

  • Tanya Dash
  • Yves JoanetteEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-981-287-080-3_302-1



Neurocognitive markers correspond to the components of cognition, along with their neurobiological and neurofunctional bases, that exhibit changes along the trajectory of normal aging.


The aging of societies and globalization of activities both characterize the twenty-first century. Sustaining active aging, and particularly cognitive health, is one of the leading global public health priorities (WHO 2015). Aging is a dynamic process that spans across the entire life course. In order to distinguish between the normal evolution of cognition across the lifespan and cognitive impairments due to neurodegenerative diseases, it is critical to recognize the different neurocognitive markers in aging. This entry provides a description of those markers at both the functional and structural level, while also addressing the neurofunctional reorganization that occurs and is responsible for the...


Executive Function Episodic Memory Cognitive Domain Semantic Memory Implicit Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Ansado, J., Monchi, O., Ennabil, N., Deslauriers, J., Jubault, T., Faure, S., & Joanette, Y. (2013). Coping with task demand in aging using neural compensation and neural reserve triggers primarily intra-hemispheric-based neurofunctional reorganization. Neuroscience Research, 75(4), 295–304.CrossRefGoogle Scholar
  2. Bialystok, E., Craik, F. I., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45(2), 459–464.CrossRefGoogle Scholar
  3. Brickman, A. M., & Stern, Y. (2009). Aging and memory in humans. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 175–180). Oxford: Academic.CrossRefGoogle Scholar
  4. Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition (3rd ed., pp. 1–54). Mahwah: Erlbaum.Google Scholar
  5. Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., … Kramer, A. F. (2007). Training-induced plasticity in older adults: Effects of training on hemispheric asymmetry. Neurobiology of Aging, 28(2), 272–283.Google Scholar
  6. Grady, C. L. (2008). Cognitive neuroscience of aging. The Annals of the New York Academy of Sciences, 1124(1), 127–144.CrossRefGoogle Scholar
  7. Greenlee, M. W., & Sekuler, A. B. (2014). Visual perception and visual cognition in healthy and pathological ageing. Frontiers in Psychology, 5, 348.CrossRefGoogle Scholar
  8. Hedden, T., & Gabrieli, J. D. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews. Neuroscience, 5(2), 87–96.CrossRefGoogle Scholar
  9. Jonides, J., Marshuetz, C., Smith, E., Reuter-Lorenz, P., Koeppe, R., & Hartley, A. (2000). Age differences in behavior and PET activation reveal differences in interference resolution in verbal working memory. Journal of Cognitive Neuroscience, 12(1), 188–196.CrossRefGoogle Scholar
  10. Legault, I., Allard, R., & Faubert, J. (2013). Healthy older observers show equivalent perceptual-cognitive training benefits to young adults for multiple object tracking. Frontiers in Psychology, 4, 323.CrossRefGoogle Scholar
  11. Madden, D. J. (2007). Aging and visual attention. Current Directions in Psychological Science, 16(2), 70–74.CrossRefGoogle Scholar
  12. Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173.CrossRefGoogle Scholar
  13. Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S. (2008). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18(5), 1010–1028.CrossRefGoogle Scholar
  14. Penke, L., Maniega, S. M., Murray, C., Gow, A. J., Hernández, M. C. V., Clayden, J. D., … Deary, I. J. (2010). A general factor of brain white matter integrity predicts information processing speed in healthy older people. The Journal of Neuroscience, 30(22), 7569–7574.Google Scholar
  15. Persson, J., Lustig, C., Nelson, J., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: A link to cognitive control? Journal of Cognitive Neuroscience, 19(6), 1021–1032.CrossRefGoogle Scholar
  16. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., … Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689.Google Scholar
  17. Salthouse, T. A. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13(4), 140–144.CrossRefGoogle Scholar
  18. Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25(5), 625–633.CrossRefGoogle Scholar
  19. Shafto, M. A., & Tyler, L. K. (2014). Language in the aging brain: The network dynamics of cognitive decline and preservation. Science, 346(6209), 583–587.CrossRefGoogle Scholar
  20. Shing, Y. L., Werkle-Bergner, M., Brehmer, Y., Müller, V., Li, S. C., & Lindenberger, U. (2010). Episodic memory across the lifespan: The contributions of associative and strategic components. Neuroscience and Biobehavioral Reviews, 34(7), 1080–1091.CrossRefGoogle Scholar
  21. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(03), 448–460.CrossRefGoogle Scholar
  22. Sullivan, E. V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews, 30(6), 749–761.CrossRefGoogle Scholar
  23. Thomsen, T., Specht, K., Hammar, Å., Nyttingnes, J., Ersland, L., & Hugdahl, K. (2004). Brain localization of attentional control in different age groups by combining functional and structural MRI. NeuroImage, 22(2), 912–919.CrossRefGoogle Scholar
  24. Valdois, S., Joanette, Y., Poissant, A., Ska, B., & Dehaut, F. (1990). Heterogeneity in the cognitive profile of normal elderly. Journal of Clinical and Experimental Neuropsychology, 12(4), 587–596.CrossRefGoogle Scholar
  25. Verhaeghen, P., & Cerella, J. (2002). Aging, executive control, and attention: A review of meta-analyses. Neuroscience and Biobehavioral Reviews, 26(7), 849–857.CrossRefGoogle Scholar
  26. WHO. (2015). World report on aging and health. Extracted from http://www.who.int/ageing/publications/world-report-2015/en/

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Centre de rechercheInstitut universitaire de gériatrie de MontréalMontréalCanada
  2. 2.École d’orthophonie et d’audiologie, Faculté de médecineUniversité de MontréalMontréalCanada