Encyclopedia of Geropsychology

Living Edition
| Editors: Nancy A. Pachana

Neurotrophic Factors in Aging

  • Natália Pessoa RochaEmail author
  • Antônio Lúcio Teixeira
Living reference work entry
DOI: https://doi.org/10.1007/978-981-287-080-3_263-1


Neurotrophic factors (NFs) are polypeptides involved in the maintenance and adequate function of neurons and neuron-supporting cells. Mechanisms underlying NFs signaling may fail during neuronal repair and aging, resulting in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Lanni et al. 2010).


Neurotrophic factors (NFs) are a group of soluble polypeptides with a range of functions in nervous system development and maintenance, and survival of neurons and neuron-supporting cells.

NFs are divided into different families according to structure and function: (i) neurotrophins (NTs): nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT-3, and NT-4; (ii) transforming growth factor (TGF)-β superfamily which includes the glial-cell-line-derived neurotrophic factor (GDNF); (iii) neurokine superfamily comprising ciliary neurotrophic factor (CNTF), interleukin (IL)-6, and IL-11, among others; and (iv) nonneuronal...


Neurotrophic factors Neurotrophins Aging Alzheimer’s disease Parkinson’s disease 
This is a preview of subscription content, log in to check access.


  1. Aloe, L., Rocco, M. L., Bianchi, P., & Manni, L. (2012). Nerve growth factor: From the early discoveries to the potential clinical use. Journal of Translational Medicine, 10, 239. doi:10.1186/1479-5876-10-239. Review.CrossRefGoogle Scholar
  2. Chakravarthy, B., Ménard, M., Ito, S., Gaudet, C., Dal Prà, I., Armato, U., & Whitfield, J. (2012). Hippocampal membrane-associated p75NTR levels are increased in Alzheimer’s disease. Journal of Alzheimer’s Disease, 30(3), 675–684.Google Scholar
  3. Diniz, B. S., Teixeira, A. L., Machado-Vieira, R., Talib, L. L., Gattaz, W. F., & Forlenza, O. V. (2013). Reduced serum nerve growth factor in patients with late-life depression. The American Journal of Geriatric Psychiatry, 21(5), 493–496.CrossRefGoogle Scholar
  4. Diniz, B. S., Teixeira, A. L., Machado-Vieira, R., Talib, L. L., Radanovic, M., Gattaz, W. F., & Forlenza, O. V. (2014). Reduced cerebrospinal fluid levels of brain-derived neurotrophic factor is associated with cognitive impairment in late-life major depression. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 69(6), 845–851.CrossRefGoogle Scholar
  5. Eriksdotter-Jönhagen, M., Linderoth, B., Lind, G., Aladellie, L., Almkvist, O., Andreasen, N., Blennow, K., Bogdanovic, N., Jelic, V., Kadir, A., Nordberg, A., Sundström, E., Wahlund, L. O., Wall, A., Wiberg, M., Winblad, B., Seiger, A., Almqvist, P., & Wahlberg, L. (2012). Encapsulated cell biodelivery of nerve growth factor to the Basal forebrain in patients with Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 33(1), 18–28.CrossRefGoogle Scholar
  6. Faria, M. C., Gonçalves, G. S., Rocha, N. P., Moraes, E. N., Bicalho, M. A., Gualberto Cintra, M. T., Jardim de Paula, J., José Ravic de Miranda, L. F., Clayton de Souza Ferreira, A., Teixeira, A. L., Gomes, K. B., Carvalho, M. G., & Sousa, L. P. (2014). Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. Journal of Psychiatric Research, 53, 166–172.CrossRefGoogle Scholar
  7. Forlenza, O. V., Teixeira, A. L., Miranda, A. S., Barbosa, I. G., Talib, L. L., Diniz, B. S., & Gattaz, W. F. (2015). Decreased neurotrophic support is associated with cognitive decline in non-demented subjects. Journal of Alzheimer’s Disease, 46, 423. [Epub ahead of print].CrossRefGoogle Scholar
  8. Frade, J. M., & Barde, Y. A. (1999). Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development, 126(4), 683–690.Google Scholar
  9. Henderson, C. E., Phillips, H. S., Pollock, R. A., Davies, A. M., Lemeulle, C., Armanini, M., Simpson, L. C., Moffet, B., Vandlen, R. A., Koliatsos, V. E., & Rosenthal, A. (1994). GDNF: A potent survival factor for motoneurons present in peripheral nerve and muscle. Science, 266(5187), 1062–1064.CrossRefGoogle Scholar
  10. Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.CrossRefGoogle Scholar
  11. Kalia, L. V., Kalia, S. K., & Lang, A. E. (2015). Disease-modifying strategies for Parkinson’s disease. Movement Disorders. doi:10.1002/mds.26354. [Epub ahead of print].Google Scholar
  12. Kao, P. F., Banigan, M. G., Vanderburg, C. R., McKee, A. C., Polgar, P. R., Seshadri, S., & Delalle, I. (2012). Increased expression of TrkB and Capzb2 accompanies preserved cognitive status in early Alzheimer disease pathology. Journal of Neuropathology and Experimental Neurology, 71(7), 654–664.CrossRefGoogle Scholar
  13. Karami, A., Eyjolfsdottir, H., Vijayaraghavan, S., Lind, G., Almqvist, P., Kadir, A., Linderoth, B., Andreasen, N., Blennow, K., Wall, A., Westman, E., Ferreira, D., Kristoffersen Wiberg, M., Wahlund, L. O., Seiger, Å., Nordberg, A., Wahlberg, L., Darreh-Shori, T., & Eriksdotter, M. (2015). Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer’s disease. Alzheimers Dement. doi:10.1016/j.jalz.2014.11.008. pii: S1552-5260(15)00007-2. [Epub ahead of print].Google Scholar
  14. Lanni, C., Stanga, S., Racchi, M., & Govoni, S. (2010). The expanding universe of neurotrophic factors: Therapeutic potential in aging and age-associated disorders. Current Pharmaceutical Design, 16(6), 698–717.CrossRefGoogle Scholar
  15. Mori, M., Jefferson, J. J., Hummel, M., & Garbe, D. S. (2008). CNTF: A putative link between dopamine D2 receptors and neurogenesis. The Journal of Neuroscience, 28(23), 5867–5869.CrossRefGoogle Scholar
  16. Parikh, V., Howe, W. M., Welchko, R. M., Naughton, S. X., D’Amore, D. E., Han, D. H., Deo, M., Turner, D. L., & Sarter, M. (2013). Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging. The European Journal of Neuroscience, 37(2), 278–293. doi:10.1111/ejn.12090. Epub 2012 Dec 11.CrossRefGoogle Scholar
  17. Pereira, D. S., de Queiroz, B. Z., Miranda, A. S., Rocha, N. P., Felício, D. C., Mateo, E. C., Favero, M., Coelho, F. M., Jesus-Moraleida, F., Gomes Pereira, D. A., Teixeira, A. L., & Máximo Pereira, L. S. (2013). Effects of physical exercise on plasma levels of brain-derived neurotrophic factor and depressive symptoms in elderly women – A randomized clinical trial. Archives of Physical Medicine and Rehabilitation, 94(8), 1443–1450.CrossRefGoogle Scholar
  18. Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1473), 1545–1564. Review.CrossRefGoogle Scholar
  19. Svendsen, C. N., Cooper, J. D., & Sofroniew, M. V. (1991). Trophic factor effects on septal cholinergic neurons. Annals of the New York Academy of Sciences, 640, 91–94.CrossRefGoogle Scholar
  20. Yaar, M., Zhai, S., Pilch, P. F., Doyle, S. M., Eisenhauer, P. B., Fine, R. E., & Gilchrest, B. A. (1997). Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. The Journal of Clinical Investigation, 100(9), 2333–2340.CrossRefGoogle Scholar
  21. Yankner, B. A., Lu, T., & Loerch, P. (2008). The aging brain. Annual Review of Pathology, 3, 41–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Natália Pessoa Rocha
    • 1
    Email author
  • Antônio Lúcio Teixeira
    • 1
  1. 1.Laboratório Interdisciplinar de Investigação Médica, Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil