Skip to main content

Z-DNA

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Z-DNA, a left-handed form of double-stranded DNA formed by CG repeat sequences, was discovered more than 50 years ago. Since then, the presence of several Z-DNA-binding proteins and Z-DNA-forming sequences in the genome have confirmed the biological relevance of Z-DNA. Over the last five decades, enormous scientific achievements have been made by outstanding scientists to reveal the chemical nature of Z-DNA and the role of Z-DNA and Z-DNA-binding proteins in cells. In this chapter, various chemical biology approaches used to evaluate the physicochemical characteristics and biological roles of Z-DNA/Z-RNA and their binding proteins are comprehensively reviewed. Finally, the clinical implications and perspectives regarding Z-DNA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balaz M et al (2005) A cationic zinc porphyrin as a chiroptical probe for Z-DNA. Angew Chem Int Ed Engl 44:4006–4009

    Article  CAS  PubMed  Google Scholar 

  • Bao HL et al (2020) Oligonucleotides DNA containing 8-trifluoromethyl-2′-deoxyguanosine for observing Z-DNA structure. Nucleic Acids Res 48(13):7041–7051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barton JK et al (1984) Chiral probes for the handedness of DNA helices: enantiomers of tris(4,7-diphenylphenanthroline)ruthenium(II). Proc Natl Acad Sci 81:1961–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behe M, Felsenfeld G (1981) Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC)poly(dG-m5dC). Proc Natl Acad Sci U S A 78(3):1619–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhanjadeo MM, Subudhi U (2019) Praseodymium promotes B–Z transition in self-assembled DNA nanostructures. RSC Adv 9(8):4616–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhanjadeo MM, Nayak AK, Subudhi U (2016) Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures. Biochem Biophys Res Commun 482(4):916–921

    Article  PubMed  Google Scholar 

  • Buzzo JR et al (2021) Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 184(23):5740–5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatake T, Sunami T (2013) Direct interactions between Z-DNA and alkaline earth cations, discovered in the presence of high concentrations of MgCl2 and CaCl2. J Inorg Biochem 124:15–25

    Article  CAS  PubMed  Google Scholar 

  • de Rosa M et al (2010) Crystal structure of a junction between two Z-DNA helices. Proc Natl Acad Sci U S A 107(20):9088–9092

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickerson RE et al (1982) The anatomy of A-, B-, and Z-DNA. Science 216(4545):475–485

    Article  CAS  PubMed  Google Scholar 

  • Drozdzal P et al (2013) Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions. Acta Crystallogr D Biol Crystallogr 69(Pt 6):1180–1190

    Article  CAS  PubMed  Google Scholar 

  • Drozdzal P et al (2015) High-resolution crystal structure of Z-DNA in complex with Cr(3+) cations. J Biol Inorg Chem 20(3):595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Urso A et al (2009) Interactions of a tetraanionic porphyrin with DNA: from a Z-DNA sensor to a versatile supramolecular device. J Am Chem Soc 131:2046–2047

    Article  PubMed  Google Scholar 

  • Feng L et al (2013) Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Res 41:7987–7996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuertes MA et al (2006) Molecular mechanisms for the B−Z transition in the example of poly[d(G−C)·d(G−C)] polymers a critical review. Chem Rev 106(6):2045–2064

    Article  CAS  PubMed  Google Scholar 

  • Geng J et al (2010) Alzheimer’s disease amyloid beta converting left-handed Z-DNA back to right-handed B-form. Chem Commun (Camb) 46:7187–7189

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Bansal M (2003) A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr 59(Pt 4):620–626

    Article  PubMed  Google Scholar 

  • Go Y et al (2021) Conformational exchange of the Zalpha domain of human RNA editing enzyme ADAR1 studied by NMR spectroscopy. Biochem Biophys Res Commun 580:63–66

    Article  CAS  PubMed  Google Scholar 

  • Ha SC et al (2004) A poxvirus protein forms a complex with left-handed Z-DNA: crystal structure of a Yatapoxvirus Zalpha bound to DNA. Proc Natl Acad Sci U S A 101(40):14367–14372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha SC et al (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437(7062):1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Ha SC et al (2009) The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1). Nucleic Acids Res 37(2):629–637

    Article  CAS  PubMed  Google Scholar 

  • Hall K et al (1984) ‘Z-RNA’ – a left-handed RNA double helix. Nature 311(5986):584–586

    Article  CAS  PubMed  Google Scholar 

  • Han JH et al (2017) Development of a vivid FRET system based on a highly emissive dG-dC analogue pair. Chemistry 23(31):7607–7613

    Article  CAS  PubMed  Google Scholar 

  • Hegde ML et al (2004) First evidence for helical transitions in supercoiled DNA by amyloid beta peptide (1-42) and aluminum: a new insight in understanding Alzheimer’s disease. J Mol Neurosci 22:19–31

    Article  PubMed  Google Scholar 

  • Herbert A (2019) Z-DNA and Z-RNA in human disease. Commun Biol 2(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Herbert A et al (1995) Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc Natl Acad Sci U S A 92(16):7550–7554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert A, Shein A, Poptsova M (2022) Z-RNA and the flipside of the SARS Nsp13 helicase. Front Immunol 13:912717. bioRxiv. p. 2022.03.03.482810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho PS et al (1986) A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 5(10):2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho PS et al (1987) The interactions of ruthenium hexaammine with Z-DNA: crystal structure of a Ru(NH3)6+3 salt of d(CGCGCG) at 1.2 A resolution. J Biomol Struct Dyn 4(4):521–534

    Article  CAS  PubMed  Google Scholar 

  • Hur JH et al (2021) AC-motif: a DNA motif containing adenine and cytosine repeat plays a role in gene regulation. Nucleic Acids Res 49(17):10150–10165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong M et al (2014) NMR study of the Z-DNA binding mode and B-Z transition activity of the Z alpha domain of human ADAR1 when perturbed by mutation on the alpha3 helix and beta-hairpin. Arch Biochem Biophys 558:95–103

    Article  CAS  PubMed  Google Scholar 

  • Johnston BH, Rich A (1985) Chemical probes of DNA conformation: detection of Z-DNA at nucleotide resolution. Cell 42:713–724

    Article  CAS  PubMed  Google Scholar 

  • Kang YM et al (2009) NMR spectroscopic elucidation of the B-Z transition of a DNA double helix induced by the Z alpha domain of human ADAR1. J Am Chem Soc 131(32):11485–11491

    Article  CAS  PubMed  Google Scholar 

  • Kim D et al (2009) Base extrusion is found at helical junctions between right- and left-handed forms of DNA and RNA. Nucleic Acids Res 37(13):4353–4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D et al (2010) Z-DNA binding proteins as targets for structure-based virtual screening. Curr Drug Targets 11(3):335–344

    Article  CAS  PubMed  Google Scholar 

  • Kim HE et al (2011) The Z beta domain of human DAI binds to Z-DNA via a novel B-Z transition pathway. FEBS Lett 585(5):772–778

    Article  CAS  PubMed  Google Scholar 

  • Kim D et al (2014) Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ). Nucleic Acids Res 42(9):5937–5948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y et al (2017) Collective helicity switching of a DNA–coat assembly. Nat Nanotechnol 12(6):551–556

    Article  CAS  PubMed  Google Scholar 

  • Kim D et al (2018) Sequence preference and structural heterogeneity of BZ junctions. Nucleic Acids Res 46(19):10504–10513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kus K et al (2015) The structure of the cyprinid herpesvirus 3 ORF112-Zalpha.Z-DNA complex reveals a mechanism of nucleic acids recognition conserved with E3L, a poxvirus inhibitor of interferon response. J Biol Chem 290(52):30713–30725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwakye-Berko F, Meshnick S (1990) Sequence preference of chloroquine binding to DNA and prevention of Z-DNA formation. Mol Biochem Parasitol 39:275–278

    Article  CAS  PubMed  Google Scholar 

  • Lafer EM et al (1981) Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci U S A 78(6):3546–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EH et al (2010) NMR study of hydrogen exchange during the B-Z transition of a DNA duplex induced by the Z alpha domains of yatapoxvirus E3L. FEBS Lett 584(21):4453–4457

    Article  CAS  PubMed  Google Scholar 

  • Lee AR et al (2012a) NMR dynamics study of the Z-DNA binding domain of human ADAR1 bound to various DNA duplexes. Biochem Biophys Res Commun 428(1):137–141

    Article  CAS  PubMed  Google Scholar 

  • Lee YM et al (2012b) NMR study on the B-Z junction formation of DNA duplexes induced by Z-DNA binding domain of human ADAR1. J Am Chem Soc 134(11):5276–5283

    Article  CAS  PubMed  Google Scholar 

  • Lee AR et al (2016) Solution structure of the Z-DNA binding domain of PKR-like protein kinase from Carassius auratus and quantitative analyses of the intermediate complex during B-Z transition. Nucleic Acids Res 44(6):2936–2948

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee AR et al (2017) NMR elucidation of reduced B-Z transition activity of PKZ protein kinase at high NaCl concentration. Biochem Biophys Res Commun 482(2):335–340

    Article  CAS  PubMed  Google Scholar 

  • Lee A-R et al (2019) NMR dynamics study reveals the Zα domain of human ADAR1 associates with and dissociates from Z-RNA more slowly than Z-DNA. ACS Chem Biol 14(2):245–255

    Article  CAS  PubMed  Google Scholar 

  • Malinge JM, Leng M (1984) Reaction of cis-diamminedichloroplatinum (II) and DNA in B or Z conformation. EMBO J 3:1273–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao C et al (1999) A nanomechanical device based on the B–Z transition of DNA. Nature 397(6715):144–146

    Article  CAS  PubMed  Google Scholar 

  • Mengqin Liu YC, Zhang Y, An R, Li L, Park S, Sugiyama H, Liang X (2022) Single base-modification reports and locates Z-DNA conformation on a Z-B-chimera formed by topological constraint. Bull Chem Soc Jpn 95(3):433–439

    Article  Google Scholar 

  • Moller A et al (1984) Bromination stabilizes poly(dG-dC) in the Z-DNA form under low-salt conditions. Biochemistry 23(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Nadler A, Diederichsen U (2008) Guanosine analog with respect to Z-DNA stabilization: nucleotide with combined C8-Bromo and C2′-Ethynyl modifications. Eur J Org Chem 2008(9):1544–1549

    Article  Google Scholar 

  • Nayak AK et al (2016) Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure. Sci Rep 6:26855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikpour N, Salavati R (2019) The RNA binding activity of the first identified trypanosome protein with Z-DNA-binding domains. Sci Rep 9(1):5904

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S et al (2014) Highly emissive deoxyguanosine analogue capable of direct visualization of B-Z transition. Chem Commun (Camb) 50(13):1573–1575

    Article  CAS  PubMed  Google Scholar 

  • Pohl FM, Jovin TM (1972) Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol 67:375–396

    Article  CAS  PubMed  Google Scholar 

  • Qu X et al (2000) Allosteric, chiral-selective drug binding to DNA. Proc Natl Acad Sci 97:12032–12037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran S, Vinod Kumar S, Kyeong Kyu K (2019) Z-DNA in the genome: from structure to disease. Biophys Rev 11(3):383–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renciuk D et al (2010) CGG repeats associated with fragile X chromosome form left-handed Z-DNA structure. Biopolymers 95:174–181

    Article  Google Scholar 

  • Rich A, Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4(7):566–572

    Article  CAS  PubMed  Google Scholar 

  • Russell WC et al (1983) Differential promotion and suppression of Z leads to B transitions in poly[d(G-C)] by histone subclasses, polyamino acids and polyamines. EMBO J 2:1647–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz T et al (1999) Crystal structure of the Z alpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284(5421):1841–1845

    Article  CAS  PubMed  Google Scholar 

  • Schwartz T et al (2001) Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat Struct Biol 8(9):761–765

    Article  CAS  PubMed  Google Scholar 

  • Seela F, Driller H (1989) Alternating d(G-C)3 and d(C-G)3 hexanucleotides containing 7-deaza-2′-deoxyguanosine or 8-aza-7-deaza-2′-deoxyguanosine in place of dG. Nucleic Acids Res 17(3):901–910

    Google Scholar 

  • Seo YJ et al (2010) Sequence discrimination of the Z alpha domain of human ADAR1 during B-Z transition of DNA duplexes. FEBS Lett 584(20):4344–4350

    Article  CAS  PubMed  Google Scholar 

  • Shaoru W et al (2018) The Cucurbit[7]Uril-based supramolecular chemistry for reversible B/Z-DNA transition. Adv Sci 5(7):1800231

    Article  Google Scholar 

  • Subramani VK et al (2016) Structural and functional studies of a large winged Z-DNA-binding domain of Danio rerio protein kinase PKZ. FEBS Lett 590:2275–2285

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama H et al (1996) Synthesis, structure and thermodynamic properties of 8-methylguanine-containing oligonucleotides: Z-DNA under physiological salt conditions. Nucleic Acids Res 24:1272–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L et al (2022) Structural insight into African swine fever virus I73R protein reveals it as a Z-DNA binding protein. Transbound Emerg Dis 69(5):e1923–e1935. https://doi.org/10.1111/tbed.14527

    Article  CAS  PubMed  Google Scholar 

  • Takaoka A, Taniguchi T (2008) Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev 60:847–857

    Article  CAS  PubMed  Google Scholar 

  • Tashiro R, Sugiyama H (2003) A nanothermometer based on the different pi stackings of B- and Z-DNA. Angew Chem Int Ed Engl 42:6018–6020

    Article  CAS  PubMed  Google Scholar 

  • Train BC et al (2014) Single C8-arylguanine modifications render oligonucleotides in the Z-DNA conformation under physiological conditions. Chem Res Toxicol 27(7):1176–1186

    Article  CAS  PubMed  Google Scholar 

  • van de Sande JH, McIntosh LP, Jovin TM (1982) Mn2+ and other transition metals at low concentration induce the right-to-left helical transformation of poly[d(G-C)]. EMBO J 1(7):777–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Vongsutilers V, Shinohara Y, Kawai G (2020) Epigenetic TET-catalyzed oxidative products of 5-methylcytosine impede Z-DNA formation of CG decamers. ACS Omega 5(14):8056–8064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Votavova H et al (1991) Effect of basic oligopeptides on the B-Z transition of poly(dG-dC). poly(dG-dC) in water-methanol solutions. Biopolymers 31(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Vasquez KM (2007) Z-DNA, an active element in the genome. Front Biosci 12:4424–4438

    Article  CAS  PubMed  Google Scholar 

  • Wang AH et al (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282(5740):680–686

    Article  CAS  PubMed  Google Scholar 

  • Wang AH et al (1984) AT base pairs are less stable than GC base pairs in Z-DNA: the crystal structure of d(m5CGTAm5CG). Cell 37(1):321–331

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ikeda R, Sugiyama H (2003) 8-Methylguanosine: a powerful Z-DNA stabilizer. J Am Chem Soc 125(44):13519–13524

    Article  CAS  PubMed  Google Scholar 

  • Xu Y et al (2004) (P)-helicene displays chiral selection in binding to Z-DNA. J Am Chem Soc 126:6566–6567

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Park S, Sugiyama H (2015) Development of a visible nanothermometer with a highly emissive 2′-O-methylated guanosine analogue. RSC Adv 5:104601–104605

    Google Scholar 

  • Zhang F et al (2016) Histone acetylation induced transformation of B-DNA to Z-DNA in cells probed through FT-IR spectroscopy. Anal Chem 88(8):4179–4182

    Article  CAS  PubMed  Google Scholar 

  • Zhang T et al (2022) ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 606:1–9

    Article  Google Scholar 

  • Zimmer C, Marck C, Guschlbauer W (1983) Z-DNA and other non-B-DNA structures are reversed to B-DNA by interaction with netropsin. FEBS Lett 154:156–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Education, Science, and Technology (MSIT) of the Korean government (2020RC1C1C1007371 to D.K.; 2020R1A4A1018019 and 2021R1A2C3011644 to K.K.; 2020R1A2C1006909 and 2022R1A4A1021817 to J.-H.L).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soyoung Park , Joon-Hwa Lee or Kyeong Kyu Kim .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, D., Subramani, V.K., Park, S., Lee, JH., Kim, K.K. (2023). Z-DNA. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_9

Download citation

Publish with us

Policies and ethics