Skip to main content

The Effect of Pressure on the Conformational Stability of DNA

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Studies into the effect of hydrostatic pressure on the thermodynamic and kinetic properties of DNA provide insights into the interactions that stabilize the canonical and noncanonical DNA structures. Under most solution conditions, double- and triple-stranded DNA molecules are stabilized to a small extent by increasing pressure regardless of their nucleotide sequence. On the other hand, the stabilities of noncanonical conformations, including hairpins, Z-DNA, and the tetrahelical DNA forms, G-quadruplexes, and i-motifs, depend on pressure in more subtle ways. While the stability of i-motif is weakly modulated by pressure, G-quadruplex structures tend to be destabilized by pressure with the extent depending on the individual features of the DNA. The pressure sensitivity of a G-quadruplex is attributed to the existence of a void volume in the folded structure and the exposure of central ions to the solvent upon unfolding. For the duplex and G-quadruplex conformations, there are sufficient data to allow the construction of temperature-pressure stability phase diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835

    Article  CAS  PubMed  Google Scholar 

  • Alba JJ, Sadurni A, Gargallo R (2016) Nucleic acid i-motif structures in analytical chemistry. Crit Rev Anal Chem 46:443–454

    Article  CAS  PubMed  Google Scholar 

  • Amiri AR, Macgregor Jr RB (2011) The effect of hydrostatic pressure on the thermal stability of DNA hairpins. Biophys Chem 156:88–95

    Article  CAS  PubMed  Google Scholar 

  • Arns L, Knop JM, Patra S, Anders C, Winter R (2019) Single-molecule insights into the temperature and pressure dependent conformational dynamics of nucleic acids in the presence of crowders and osmolytes. Biophys Chem 251:106190

    Article  CAS  PubMed  Google Scholar 

  • Blandamer MJ, Davis MI, Douheret G, Reis JCR (2001) Apparent molar isentropic compressions and expansions of solutions. Chem Soc Rev 30:8–15

    Article  CAS  Google Scholar 

  • Bloomfield VA, Crothers DM, Tinoco Jr I (2000) Nucleic acids: structures, properties, and functions. University Science Books, Sausalito

    Google Scholar 

  • Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalikian TV (2001) Structural thermodynamics of hydration. J Phys Chem B 105:12566–12578

    Article  CAS  Google Scholar 

  • Chalikian TV, Breslauer KJ (1998a) Thermodynamic analysis of biomolecules: a volumetric approach. Curr Opin Struct Biol 8:657–664

    Article  CAS  PubMed  Google Scholar 

  • Chalikian TV, Breslauer KJ (1998b) Volumetric properties of nucleic acids. Biopolymers 48:264–280

    Article  CAS  PubMed  Google Scholar 

  • Chalikian TV, Macgregor RB (2007) Nucleic acid hydration: a volumetric perspective. Phys Life Rev 4:91–115

    Article  Google Scholar 

  • Chalikian TV, Macgregor Jr RB (2021) Volumetric properties of four-stranded DNA structures. Biology 10:813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalikian TV, Sarvazyan AP, Breslauer KJ (1994) Hydration and partial compressibility of biological compounds. Biophys Chem 51:89–107

    Article  CAS  PubMed  Google Scholar 

  • Chalikian TV, Volker J, Plum GE, Breslauer KJ (1999) A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc Natl Acad Sci U S A 96:7853–7858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day HA, Pavlou P, Waller ZA (2014) i-motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 22:4407–4418

    Article  CAS  PubMed  Google Scholar 

  • Dragan AI, Russell DJ, Privalov PL (2009) DNA hydration studied by pressure perturbation scanning microcalorimetry. Biopolymers 91:95–101

    Article  CAS  PubMed  Google Scholar 

  • Dubins DN, Macgregor Jr RB (2004) Volumetric properties of the formation of double stranded DNA: a nearest-neighbor analysis. Biopolymers 73:242–257

    Article  CAS  PubMed  Google Scholar 

  • Dubins DN, Lee A, Macgregor Jr RB, Chalikian TV (2001) On the stability of double stranded nucleic acids. J Am Chem Soc 123:9254–9259

    Article  CAS  PubMed  Google Scholar 

  • Fan HY, Shek YL, Amiri A, Dubins DN, Heerklotz H, Macgregor RB, Chalikian TV (2011) Volumetric characterization of sodium-induced G-quadruplex formation. J Am Chem Soc 133:4518–4526

    Article  CAS  PubMed  Google Scholar 

  • Frank-Kamenetskii MD, Mirkin SM (1995) Triplex DNA structures. Annu Rev Biochem 64:65–95

    Article  CAS  PubMed  Google Scholar 

  • Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci U S A 48:2013–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard E, Prange T, Dhaussy AC, Migianu-Griffoni E, Lecouvey M, Chervin JC, Mezouar M, Kahn R, Fourme R (2007) Adaptation of the base-paired double-helix molecular architecture to extreme pressure. Nucleic Acids Res 35:4800–4808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunter TE, Gunter KK (1972) Pressure dependence of the helix-coil transition temperature for polynucleic acid helices. Biopolymers 11:667–678

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA (1971) Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry 10:2436–2442

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, MacLeod RM (1974) Pressure-temperature stability of DNA in neutral salt solutions. Biopolymers 13:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Macleod RM (1977) The effect of base composition on the pressure stability of DNA in neutral salt solution. Biopolymers 16:1833–1835

    Article  CAS  PubMed  Google Scholar 

  • Heden CG, Lindahl T, Toplin I (1964) Stability of deoxyribonucleic acid solutions under high pressure. Acta Chem Scand 18:1150–1156

    Article  CAS  Google Scholar 

  • Herbert A (2019) Z-DNA and Z-RNA in human disease. Commun Biol 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes F, Steiner RF (1966) Effects of pressure on the helix-coil transitions of the poly A-poly U system. Biopolymers 4:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Huppert JL (2010) Structure, location and interactions of G-quadruplexes. FEBS J 277:3452–3458

    Article  CAS  PubMed  Google Scholar 

  • Isaacs NS (1981) Liquid phase high pressure chemistry. Wiley, New York

    Google Scholar 

  • Kharakoz DP (1989) Volumetric properties of proteins and their analogs in diluted water solutions. 1. Partial volumes of amino acids at 15–55 °C. Biophys Chem 34:115–125

    Article  CAS  PubMed  Google Scholar 

  • Kharakoz DP (1991) Volumetric properties of proteins and their analogs in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J Phys Chem 95:5634–5642

    Article  CAS  Google Scholar 

  • Kharakoz DP (1992) Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water. J Solut Chem 21:569–595

    Article  CAS  Google Scholar 

  • Krzyzaniak A, Salanski P, Jurczak J, Barciszewski J (1991) B-Z DNA reversible conformation changes effected by high pressure. FEBS Lett 279:1–4

    Article  CAS  PubMed  Google Scholar 

  • Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482–5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepper CP, Williams MAK, Edwards PJB, Filichev VV, Jameson GB (2019) Effects of pressure and pH on the physical stability of an i-motif DNA structure. ChemPhysChem 20:1567–1571

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Dubins DN, Le D, Leung K, Macgregor Jr RB (2017) The role of loops and cation on the volume of unfolding of G-quadruplexes related to HTel. Biophys Chem 231:55–63

    Article  CAS  PubMed  Google Scholar 

  • Lin MC, Macgregor Jr RB (1996) The activation volume of a DNA helix-coil transition. Biochemistry 35:11846–11851

    Article  CAS  PubMed  Google Scholar 

  • Lin MC, Macgregor Jr RB (1997) Pressure-jump relaxation kinetics of a DNA triplex helix-coil equilibrium. Biopolymers 42:129–132

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Kim BG, Feroze U, Macgregor Jr RB, Chalikian TV (2018) Probing the ionic atmosphere and hydration of the c-MYC i-motif. J Am Chem Soc 140:2229–2238

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Scott L, Tariq N, Kume T, Dubins DN, Macgregor Jr RB, Chalikian TV (2021) Volumetric interplay between the conformational states adopted by guanine-rich DNA from the c-MYC promoter. J Phys Chem B 125:7406–7416

    Article  CAS  PubMed  Google Scholar 

  • Luong TQ, Kapoor S, Winter R (2015) Pressure - a gateway to fundamental insights into protein solvation, dynamics, and function. ChemPhysChem 16:3555–3571

    Article  CAS  PubMed  Google Scholar 

  • Macgregor Jr RB (1996) Chain length and oligonucleotide stability at high pressure. Biopolymers 38:321–327

    Article  CAS  PubMed  Google Scholar 

  • Macgregor Jr RB (1998) Effect of hydrostatic pressure on nucleic acids. Biopolymers 48:253–263

    Article  CAS  PubMed  Google Scholar 

  • Macgregor Jr RB, Chen MY (1990) ΔV° of the Na+-induced B-Z transition of poly[d(G-C)] is positive. Biopolymers 29:1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Macgregor Jr RB, Wu J, Najaf-Zadeh R (1996) Sequence, salt, charge, and the stability of DNA at high pressure. In: Markley J, Northrop DB, Royer CA (eds) High pressure effects in molecular biophysics and enzymology. Oxford University Press, New York, pp 274–297

    Google Scholar 

  • Marcus Y (2011) Electrostriction in electrolyte solutions. Chem Rev 111:2761–2783

    Article  CAS  PubMed  Google Scholar 

  • Marky LA, Rentzeperis D, Luneva NP, Cosman M, Geacintov NE, Kupke DW (1996) Differential hydration thermodynamics of stereoisomeric DNA-benzo a pyrene adducts derived from diol epoxide enantiomers with different tumorigenic potentials. J Am Chem Soc 118:3804–3810

    Article  CAS  Google Scholar 

  • Molnar OR, Somkuti J, Smeller L (2020) Negative volume changes of human G-quadruplexes at unfolding. Heliyon 6:6

    Article  Google Scholar 

  • Najaf-Zadeh R, Wu JQ, Macgregor Jr RB (1995) Effect of cations on the volume of the helix-coil transition of poly[d(A-T)]. Biochim Biophys Acta 1262:52–58

    Article  PubMed  Google Scholar 

  • Norberg J, Nilsson L (1996) Constant pressure molecular dynamics simulations of the dodecamers: d(GCGCGCGCGCGC)2 and r(GCGCGCGCGCGC)2. J Chem Phys 104:6052–6057

    Article  CAS  Google Scholar 

  • Nordmeier E (1992) Effects of pressure on the helix-coil transition of calf thymus DNA. J Phys Chem 96:1494–1501

    Article  CAS  Google Scholar 

  • Oganesian L, Bryan TM (2007) Physiological relevance of telomeric G-quadruplex formation: a potential drug target. BioEssays 29:155–165

    Article  CAS  PubMed  Google Scholar 

  • Patra S, Anders C, Erwin N, Winter R (2017) Osmolyte effects on the conformational dynamics of a DNA hairpin at ambient and extreme environmental conditions. Angew Chem Int Ed 56:5045–5049

    Article  CAS  Google Scholar 

  • Patra S, Anders C, Schummel PH, Winter R (2018) Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Phys Chem Chem Phys 20:13159–13170

    Article  CAS  PubMed  Google Scholar 

  • Patra S, Schuabb V, Kiesel I, Knop JM, Oliva R, Winter R (2019) Exploring the effects of cosolutes and crowding on the volumetric and kinetic profile of the conformational dynamics of a poly dA loop DNA hairpin: a single-molecule FRET study. Nucleic Acids Res 47:981–996

    Article  CAS  PubMed  Google Scholar 

  • Plum GE, Pilch DS, Singleton SF, Breslauer KJ (1995) Nucleic acid hybridization: triplex stability and energetics. Annu Rev Biophys Biomol Struct 24:319–350

    Article  CAS  PubMed  Google Scholar 

  • Rayan G, Macgregor RB (2005) Comparison of the heat- and pressure-induced helix-coil transition of two DNA copolymers. J Phys Chem B 109:15558–15565

    Article  CAS  PubMed  Google Scholar 

  • Rayan G, Tsamaloukas AD, Macgregor RB, Heerklotz H (2009) Helix-coil transition of DNA monitored by pressure perturbation calorimetry. J Phys Chem B 113:1738–1742

    Article  CAS  PubMed  Google Scholar 

  • SantaLucia Jr J, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440

    Article  CAS  PubMed  Google Scholar 

  • Sarvazyan AP (1991) Ultrasonic velocimetry of biological compounds. Annu Rev Biophys Biophys Chem 20:321–342

    Article  CAS  PubMed  Google Scholar 

  • Scharnagl C, Reif M, Friedrich J (2005) Stability of proteins: temperature, pressure and the role of the solvent. Biochim Biophys Acta 1749:187–213

    Article  CAS  PubMed  Google Scholar 

  • Shek YL, Noudeh GD, Nazari M, Heerklotz H, Abu-Ghazalah RM, Dubins DN, Chalikian TV (2014) Folding thermodynamics of the hybrid-1 type intramolecular human telomeric G-quadruplex. Biopolymers 101:216–227

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Macgregor Jr RB (2007) Effect of cesium on the volume of the helix-coil transition of dA·dT polymers and their ligand complexes. Biophys Chem 130:93–101

    Article  CAS  PubMed  Google Scholar 

  • Somkuti J, Molnar OR, Smeller L (2020) Revealing unfolding steps and volume changes of human telomeric i-motif DNA. Phys Chem Chem Phys 22:23816–23823

    Article  CAS  PubMed  Google Scholar 

  • Son I, Shek YL, Dubins DN, Chalikian TV (2014) Hydration changes accompanying helix-to-coil DNA transitions. J Am Chem Soc 136:4040–4047

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto N, Endoh T, Takahashi S, Tateishi-Karimata H (2021) Chemical biology of double helical and non-double helical nucleic acids: “To B or not To B, that is the question”. Bull Chem Soc Jpn 94:1970–1998

    Article  CAS  Google Scholar 

  • Sung HL, Nesbitt DJ (2020a) DNA hairpin hybridization under extreme pressures: a single-molecule FRET study. J Phys Chem B 124:110–120

    Article  CAS  PubMed  Google Scholar 

  • Sung HL, Nesbitt DJ (2020b) Single-molecule kinetic studies of DNA hybridization under extreme pressures. Phys Chem Chem Phys 22:23491–23501

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Sugimoto N (2013a) Effect of pressure on the stability of G-quadruplex DNA: thermodynamics under crowding conditions. Angew Chem Int Ed 52:13774–13778

    Article  CAS  Google Scholar 

  • Takahashi S, Sugimoto N (2013b) Effect of pressure on thermal stability of G-quadruplex DNA and double-stranded DNA structures. Molecules 18:13297–13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Sugimoto N (2015) Pressure-dependent formation of i-motif and G-quadruplex DNA structures. Phys Chem Chem Phys 17:31004–31010

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Sugimoto N (2017) Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure. Biophys Chem 231:146–154

    Article  CAS  PubMed  Google Scholar 

  • Tateishi-Karimata H, Sugimoto N (2020) Chemical biology of non-canonical structures of nucleic acids for therapeutic applications. Chem Commun 56:2379–2390

    Article  CAS  Google Scholar 

  • Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S (2020) The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 21:459–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weida B, Gill SJ (1966) Pressure effect on deoxyribonucleic acid transition. Biochim Biophys Acta 112:179–181

    Article  CAS  PubMed  Google Scholar 

  • Wilton DJ, Ghosh M, Chary KVA, Akasaka K, Williamson MP (2008) Structural change in a B-DNA helix with hydrostatic pressure. Nucleic Acids Res 36:4032–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter R (2019) Interrogating the structural dynamics and energetics of biomolecular systems with pressure modulation. Annu Rev Biophys 48:441–463

    Article  CAS  PubMed  Google Scholar 

  • Wu JQ, Macgregor Jr RB (1993) Pressure dependence of the melting temperature of dA·dT polymers. Biochemistry 32:12531–12537

    Article  CAS  PubMed  Google Scholar 

  • Wu JQ, Macgregor Jr RB (1995) Pressure dependence of the helix-coil transition temperature of poly[d(G-C)]. Biopolymers 35:369–376

    Article  CAS  PubMed  Google Scholar 

  • Zieba K, Chu TM, Kupke DW, Marky LA (1991) Differential hydration of dA·dT base pairing and dA and dT bulges in deoxyoligonucleotides. Biochemistry 30:8018–8026

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigran V. Chalikian .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chalikian, T.V., Macgregor, R.B. (2023). The Effect of Pressure on the Conformational Stability of DNA. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_3

Download citation

Publish with us

Policies and ethics